人教版数学九下08《相似 全章复习与巩固》知识讲解+巩固练习(基础版)(含答案)

DOC
  • 阅读 66 次
  • 下载 0 次
  • 页数 15 页
  • 大小 435.500 KB
  • 2022-11-19 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
人教版数学九下08《相似 全章复习与巩固》知识讲解+巩固练习(基础版)(含答案)
可在后台配置第一页与第二页中间广告代码
人教版数学九下08《相似 全章复习与巩固》知识讲解+巩固练习(基础版)(含答案)
可在后台配置第二页与第三页中间广告代码
人教版数学九下08《相似 全章复习与巩固》知识讲解+巩固练习(基础版)(含答案)
可在后台配置第三页与第四页中间广告代码
人教版数学九下08《相似 全章复习与巩固》知识讲解+巩固练习(基础版)(含答案)
人教版数学九下08《相似 全章复习与巩固》知识讲解+巩固练习(基础版)(含答案)
还剩5页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 15
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】人教版数学九下08《相似 全章复习与巩固》知识讲解+巩固练习(基础版)(含答案).doc,共(15)页,435.500 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-24155.html

以下为本文档部分文字说明:

《相似》全章复习与巩固--知识讲解(基础)【学习目标】1、了解比例的基本性质,线段的比、成比例线段;2、通过具体实例认识图形的相似,探索相似图形的性质,理解相似多边形对应角相等、对应边成比例、周长的比等于相似比、面积的比等于相似比的平方,探索并掌握相似三角形的判定方法,并能利用这些性质和判定

方法解决生活中的一些实际问题;3、了解图形的位似,能够利用位似将一个图形放大或缩小,在同一直角坐标系中,感受位似变换后点的坐标的变化;4、结合相似图形性质和判定方法的探索和证明,进一步培养推理能力,发展逻辑思

维能力和推理论证的表达能力,以及综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、相似图形及比例线段1.相似图形:在数学上,我们把形状相同的图形称为相似图形(similarfigures)

.要点诠释:(1)相似图形就是指形状相同,但大小不一定相同的图形;(2)“全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形全等;2.相似多边形如果两个多边形的对应角相等,对应边的

比相等,我们就说它们是相似多边形.要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.3.比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四

条线段是成比例线段,简称比例线段.要点诠释:(1)若a:b=c:d,则ad=bc;(d也叫第四比例项)(2)若a:b=b:c,则2b=ac(b称为a、c的比例中项).要点二、相似三角形1.相似三角形的判定:判定方法(一):平行于三角形一边的

直线和其他两边相交,所构成的三角形和原三角形相似.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似.判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点诠释:此方法要求用三

角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必须是两边的夹角,否则,判断的结果可能是错误的.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.要点诠释:要判定

两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.2.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等;(2)相似三角形中的重

要线段的比等于相似比;相似三角形对应高,对应中线,对应角平分线的比都等于相似比.要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.(3)相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方。3.相似多边形的性质:(1)相似多边形的对应角相等,对应

边的比相等.(2)相似多边形的周长比等于相似比.(3)相似多边形的面积比等于相似比的平方.要点三、位似1.位似图形定义:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.2.位似图形的性质:(1)位似图形的对应点和位似中心在同一

条直线上;(2)位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.要点诠释:(1)位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.(2)位似变换中对应点的坐标变化

规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.【典型例题】类型一、相似图形及比例线段1.(2016•崇明县一模)如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F

,,AC=14;(1)求AB、BC的长;(2)如果AD=7,CF=14,求BE的长.【思路点拨】(1)由平行线分线段成比例定理和比例的性质得出,即可求出AB的长,得出BC的长;(2)过点A作AG∥DF交BE于点H,交CF于点G,得出AD=HE=GF=7,由平行线分

线段成比例定理得出比例式求出BH,即可得出结果.【答案与解析】解:(1)∵AD∥BE∥CF,∴,∴,∵AC=14,∴AB=4,∴BC=14﹣4=10;(2)过点A作AG∥DF交BE于点H,交CF于点G,如图所示:又∵AD∥BE∥C

F,AD=7,∴AD=HE=GF=7,∵CF=14,∴CG=14﹣7=7,∵BE∥CF,∴,∴BH=2,∴BE=2+7=9.【总结升华】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例;熟练掌握平行线分线段成比例,通过作辅助线运用平行线分线段成比例求出BH是解决问题的关键.

举一反三【变式】(2015•眉山)如图,AD∥BE∥CF,直线l1、l2这与三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=2,则EF的长为()A.4B.5C.6D.8【答案】C.类型二、相似三角形2.如图所示,在4×4的正方形方格中,△ABC和

△DEF的顶点都在边长为1的小正方形的顶点上.(1)∠ABC=________,BC=________;(2)判断△ABC与△DEF是否相似,并说明理由.【答案与解析】(1)135°,(2)△ABC和△DEF相似(或△ABC∽△DEF).因为,,所以.又因为

∠ABC=∠DEF=90°+45°=135°,所以△ABC∽△DEF.【总结升华】根据正方形的性质和格点三角形的特点,从边角方面去探究两三角形有关角的度数和边的长度,利用两边对应成比例且夹角相等证明两三

角形相似.举一反三:【变式】下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是().A.B.C.D.【答案】B.【高清课堂:相似专题复习ID号:394502关联的位置名称(播放点名称):“

一线三等角”问题及例5】3.在正方形ABCD中,P是BC上的点,BP=3PC,Q是CD的中点,求证:△ADQ∽△QCP.【答案与解析】∵BP=3PC,Q是CD的中点,∴12CPCQDQAD,又∵∠ADQ=∠QCP=90°,∴△ADQ∽△QCP.【总结升华】本题考查了相似三角形对应角相等的性质

,以及相似三角形的判定.4.如图所示,在△ABC和△DBE中,若.(1)△ABC与△DBE的周长差为10cm,求△ABC的周长;(2)△ABC与△DBE的面积之和为170cm2,求△DBE的面积.【答案与解析】(1)∵,∴△ABC∽△DBE.∴,设△ABC的周长为5kcm,△DBE的

周长为3kcm,∴,,,∴△ABC的周长为.(2)∵△ABC∽△DBE,∴.设,.∴,解得k=5,∴.【总结升华】相似三角形的周长比等于相似比,相似三角形的面积比等于相似比的平方.举一反三【变式】如图,在平

行四边形ABCD中,E是CD上的一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=()A.2:5:25B.4:9:25C.2:3:5D.4:10:25【答案】D.5.如图所示,已知在梯形ABCD中,AD∥BC,AB=DC=AD=6

,∠ABC=60°,点E,F分别在线段AD,DC上(点E与点A,D不重合),且∠BEF=120°,设,.(1)求y与x的函数解析式;(2)当x为何值时,y有最大值?最大值是多少?【答案与解析】(1)在梯形ABCD中,AD∥BC,AB=DC=AD=6,∠ABC=

60°,所以∠A=∠D=120°,所以∠AEB+∠ABE=180°-120°=60°.因为∠BEF=120°,所以∠AEB+∠DEF=180°-120°=60°,所以∠ABE=∠DEF.所以△ABE∽△DEF,所以.因为,,所以,所以y与

x的函数解析式是.(2),所以当时,y有最大值,最大值为.【总结升华】本题考查了等腰梯形的性质,相似三角形的判定和性质,以及二次函数的最值问题.举一反三【变式】如图所示,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从

点B出发,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE的长为y.(1)求出y关于x的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值,最大值为

多少?【答案】(1)因为DE∥BC,所以△ADE∽△ABC,所以.又因为AB=8,AC=6,,,所以,即,自变量x的取值范围为.(2).所以当时,S有最大值,且最大值为6.类型三、位似6.将下图中的△ABC作下列变

换,画出相应的图形,指出三个顶点的坐标所发生的变化.(1)沿y轴负方向平移1个单位;(2)关于x轴对称;(3)以C点为位似中心,放大到1.5倍.【答案与解析】变换后的图形如下图所示.(1)将△ABC沿y轴负方向平移1个单位后得到△A1B1C1,A1(-5,

-1),B1(0,2),C1(0,-1).即横坐标不变,纵坐标减小.(2)将△ABC关于x轴对称后,得△A2B2C2,A2(-5,0),B2(0,-3),C2(0,0).即横坐标不变,纵坐标变为原来的相反数.(3)将△ABC以C点为位似中心,放大到1

.5倍得△A3B3C3(有2个三角形),显然,A3(-5×1.5,0),B3(0,3×1.5),C3(0,0),即A3(-7.5,0),B3(0,4.5),C3(0,0),或A3(7.5,0)、B3(0,-4.5)、C3(0,0).【总结升华】本题应先按图形

变换的要求画出相应的图形,再求出变换后图形的点的坐标,第(3)问可先求变换后图形的点的坐标,但注意此时的位似中心是原点.《相似》全章复习与巩固--巩固练习(基础)【巩固练习】一、选择题1.(2015•乐山)如

图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知,则的值为()A.B.C.D.2.(2016•奉贤区一模)用一个4倍放大镜照△ABC,下列说法错误的是()A.△ABC放大后,∠B是原来的4倍B.△ABC放大后,边A

B是原来的4倍C.△ABC放大后,周长是原来的4倍D.△ABC放大后,面积是原来的16倍3.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与相似的是()4.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A

′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是,则点B的横坐标是()A.B.C.D.5.下列说法:①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1:2;④两个相似多边形

的面积比为4:9,则周长的比为16:81中,正确的有()A.1个B.2个C.3个D.4个6.如图,在正方形ABCD中,E是CD的中点,P是BC边上的点,下列条件中不能推出△ABP与以点E、C、P为顶点的三角形相似的是()A.∠APB=∠EPCB.∠APE=90

°C.P是BC的中点D.BP:BC=2:37.如图,在△ABC中,EF∥BC,12AEEB,,S四边形BCFE=8,则S△ABC=()A.9B.10C.12D.138.如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则

下列结论正确的是()A.∠E=2∠KB.BC=2HIC.六边形ABCDEF的周长=六边形GHIJKL的周长D.S六边形ABCDEF=2S六边形GHIJKL二、填空题9.(2016•衡阳)若△ABC与△DEF相似且面积之比为25:16,则△ABC与△DEF的周长之比为.10.如图,在△ABC中,D、

E分别是AB和AC中点,F是BC延长线上一点,DF平分CE于点G,CF=1,则BC=_______,△ADE•与△ABC•的面积之比为_______,•△CFG与△BFD的面积之比为________.11.如图,梯形ABCD中,AD∥BC,AC、BD交于O点,S△AOD:S△COB

=1:9,则S△DOC:S△BOC=_______.12.在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在面上的影长为40米,则古塔高为________.13.(2015•金华)如图,直线

l1、l2、…l6是一组等距的平行线,过直线l1上的点A作两条射线,分别与直线l3、l6相交于点B、E、C、F.若BC=2,则EF的长是.14.如图,在△ABC中,MN∥BC,若∠C=68°,AM:MB=1:2,则∠MNA=_______度,AN:NC=________

_____.15.如图,点D,E分别在AB、AC上,且∠ABC=∠AED。若DE=4,AE=5,BC=8,则AB的长为_________.第14题第15题16.-油桶高0.8m,桶内有油,一根木棒长1m,从桶盖小口斜插入桶内,一端到桶底,另一端到小口,抽出木棒,量得棒上浸油部

分长0.8m,则桶内油面的高度为.三、解答题17.如图,等腰直角△ABC的斜边AB所在的直线上有点E、F,且∠E+∠F=45°,AE=3,设AB=x,BF=y,求y关于x的函数解析式.18.(2015•岳阳)如图,正方形AB

CD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.19.如图,圆中两弦AB、CD相交于

M,且AC=CM=MD,MB=AM=1,求此圆的直径的长.20.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动,点Q沿DA边从点D开始向A以1cm/s的速度移动.如果P、Q同时

出发,用t秒表示移动的时间(0≤t≤6)那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)对四边形QAPC的面积,提出一个与计算结果有关的结论;(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC

相似?【答案与解析】一.选择题1.【答案】D.【解析】∵l1∥l2∥l3,,∴===,故选:D.2.【答案】A.【解析】∵放大前后的三角形相似,∴放大后三角形的内角度数不变,面积为原来的4倍,周长和边长均为原来的2倍,则A错误,符合题意.3.【答案

】A【解析】考点:相似三角形的判定.4.【答案】D.5.【答案】B.【解析】提示:①③.6.【答案】C.7.【答案】A.【解析】求出AEAB的值,推出△AEF∽△ABC,得出19AEFABCSS△△,把S四边形BCFE=8代入求出即可.8.【答案】B.【解析】根据相似

多边形的性质对各选项进行逐一分析即可.二.填空题9.【答案】5:4.【解析】∵△ABC与△DEF相似且面积之比为25:16,∴△ABC与△DEF的相似比为5:4;∴△ABC与△DEF的周长之比为5:4.10

.【答案】2,1:4,1:6.11.【答案】1:3.【解析】∵S△AOD:S△COB=1:9,,∵△AOD与△DOC等高,∴S△AOD:S△DOC=1:3,∴S△DOC:S△BOC=1:3.12.【答案】30m.13.【答案】5.【解析】∵l3∥l6

,∴BC∥EF,∴△ABC∽△AEF,∴=,∵BC=2,∴EF=5.14.【答案】68°,1:2.【解析】首先,想到定理的含义,再结合图形分析(或进行比例变形)就可直接求出结果.15.【答案】10.【解析】∵∠A

BC=∠AED,∠BAC=∠EAD∴△AED∽△ABC,∴AEDEABCB,DE=10.16.【答案】0.64m.【解析】将实际问题转化为几何问题是解题的关键,即由题意可得Rt△ABC,其中AB=1m,AC=0.8m,B

D=0.8m,DE//BC,将问题转化为求CE的长,由平行线分线段成比例定理计算即得.三.解答题17.【解析】解:△ABC为等腰直角三角形,∠CAB=∠CBA=45°,∠E+∠F=45°,∠E+∠ECA=∠CAB=45°,∠F+∠BCF=∠C

BA=45°,所以∠ECA=∠F,∠E=∠BCF,所以△ECA∽△CFB,,3y=CA2=x2,即y=x2.18.【解析】证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EF

A;(2)解:∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.19.【解析】连结BD,由∠CAM=∠BDM,∠AMC=∠DMB,△ACM

∽△DBM,,又DM=CM,CM2=AM·BM=2,CM=DM=,AC=.又AC2+CM2=AM2,所以∠ACD=90°,所以圆的直径为AD==.20.【解析】(1)对于任何时刻t,AP=2t,DQ=t,QA=6-t,当QA=AP时,△QAP•是等腰直角三角形,即6-t=2

t,t=2秒.(2)四边形QAPC的面积=S△QAC+S△APC=(36-6t)+6t=36cm2,在P、Q两点移动的过程中,四边形QAPC的面积始终保持不变(或P、Q两点到对角线AC的距离之和保持不变)(3)分两种情况:①当时△QAP∽△ABC,则,从而t=1.2,②

当时△PAQ∽△ABC,则,从而t=3.

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 112
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?