【文档说明】(新高考)高考物理一轮复习教案第11章第1讲《交变电流的产生和描述》(含详解).doc,共(30)页,754.500 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-80466.html
以下为本文档部分文字说明:
考情分析高考对本部分知识的考查主要以选择题的形式出现,试题的难度一般在中等偏下。重要考点1.交变电流、交变电流的图像(Ⅰ)2.正弦式交变电流的函数表达式、峰值和有效值(Ⅰ)3.理想变压器(Ⅱ)4.远距离输电(Ⅰ)实验十二:利用传感器制作简单的自动控制装置考点解读1.交变电流的产生及其各物
理量的变化规律,应用交流电的图像解决问题。2.对交变电流的四值进行计算。3.理想变压器原、副线圈中电流、电压、功率之间的关系应用,变压器动态变化的分析方法。4.远距离输电的原理和相关计算。5.利用传感器制作简单的自动控制装置,能够解决与科技、社会紧密结合的问题。第1讲交变电流的产生和描述知识点
交变电流、交变电流的图像Ⅰ1.交变电流(1)定义:大小和方向均随时间做01周期性变化的电流叫作交变电流。(2)图像:用以描述交变电流随时间变化的规律,图a、b、c、d所示电流都属于交变电流,其中02按正弦规律变化的交变电流叫作正
弦式交变电流,简称正弦式电流,如图a所示。2.正弦式交变电流的产生和变化规律(1)产生:在匀强磁场中,线圈绕垂直于磁场方向的轴03匀速转动产生的电流是正弦式交变电流。(2)中性面①中性面:04与磁感线垂直的
平面称为中性面。②中性面的特点以及与峰值面(中性面的垂面)的比较中性面峰值面含义与磁场方向垂直的平面与磁场方向平行的平面穿过线圈的磁通量最大(BS)0磁通量的变化率0最大感应电动势0最大(NBSω)电流方向发生改变不变(3)电流方
向的改变:线圈通过中性面时,电流方向05发生改变,一个周期内线圈两次通过中性面,因此电流的方向改变06两次。(4)正弦式交流电的图像:如果从线圈位于中性面位置时开始计时,其图像为正弦曲线。如图甲、乙所示。(5)变化规律正
弦式交变电流的函数表达式(线圈在中性面位置时开始计时)①电动势e随时间变化的规律:07e=Emsinωt,其中ω表示线圈转动的角速度,Em=NBSω。②负载两端的电压u随时间变化的规律:08u=Umsinωt。③电流i随时间变化的规律:09i=Im
sinωt。知识点描述交变电流的物理量Ⅰ1.周期和频率(1)周期(T):交变电流完成一次周期性变化(线圈转一周)所需的时间,单位是秒(s),公式T=2πω。(2)频率(f):交变电流在单位时间内完成周期性变化
的次数。单位是赫兹(Hz)。(3)周期和频率的关系:T=011f或f=021T。2.交变电流的瞬时值、峰值、有效值和平均值(1)瞬时值:交变电流的电动势、电流或电压在某一03时刻的值,是时间的函数。(2)峰值:交变电
流的电动势、电流或电压所能达到的04最大值。(3)有效值①定义:让交变电流与恒定电流分别通过大小相同的电阻,如果在交变电流的一个周期内它们产生的05热量相等,就把这个恒定电流的电流I、电压U叫作这一交变电流的06有效值。②有效值和峰值的关系:E=07
Em2,U=08Um2,I=09Im2。(仅适用于正弦式交流电)(4)平均值:交变电流图像中图线与时间轴10所围面积跟对应时间的比值。一堵点疏通1.将一个平面线圈置于匀强磁场中,并使它绕位于线圈平面内且垂直于磁感线的轴匀
速转动,线圈中产生的一定是正弦式交变电流。()2.矩形线圈在匀强磁场中匀速转动,经过中性面时,线圈中的感应电动势最大。()3.有效值公式I=Im2适用于任何交变电流。()4.交流电表的测量值是交变电流的有效值。()5.我国使用的交变电流周期是0.02
s,电流方向每秒改变100次。()6.电路中保险丝的熔断电流是指电流的最大值。()7.电容器的耐压值要高于交变电流的最大电压才不会被击穿。()答案1.√2.×3.×4.√5.√6.×7.√二对点激活1.下图中不表示交变电流的是()答案A解析大
小和方向都发生周期性变化的电流是交变电流,A项的电流方向不变,所以A是直流电而不是交流电,B、C、D项中的电流都是交变电流,故选A。2.(人教版选择性必修第二册·P48·演示实验改编)把发光颜色不同的两个二极管并联(该类二极管具有单向导电性,导通时发光),使两者正负极方向不
同。当摇动如图所示的手摇发电机时,两个二极管交替发光,则流过其中一个二极管的电流是()A.交流电B.直流电C.恒定电流D.涡流答案B解析交流电是指大小和方向发生周期性变化的电流,直流电的方向不变,恒定电流的大小与方向均不变,涡流是感
应电流;手摇发电机产生的是交流电,因为该类二极管具有单向导电性,所以通过每个二极管的电流方向不变,为直流电,B正确。3.(人教版选择性必修第二册·P51·T1改编)(多选)关于中性面,下列说法正确的是()A
.线圈在转动中经过中性面位置时,穿过线圈的磁通量最大,磁通量的变化率为零B.线圈在转动中经过中性面位置时,穿过线圈的磁通量为零,磁通量的变化率最大C.线圈每经过一次中性面,感应电流的方向就改变一次D.线圈每转动一周经过中性面一次,所以线圈每转动一周,感应电流的方向就改变一
次答案AC解析线圈在转动中经过中性面位置时,穿过线圈的磁通量最大,磁通量变化率为零,线圈每经过一次中性面,线圈中感应电流的方向就改变一次,线圈每转动一周,两次经过中性面,感应电流的方向改变两次,B、D错误,A、C正
确。4.(人教版选择性必修第二册·P51·T4改编)(多选)如图所示,闭合的矩形导体线圈abcd在匀强磁场中绕垂直于磁感线的对称轴OO′匀速转动,沿着OO′方向观察,线圈沿顺时针方向转动。已知匀强磁场的磁感应强度为B,线圈匝数为n,ab边的边长为L1,ad边的边长为L2,
线圈电阻为R,转动的角速度为ω,则当线圈转至图示位置时()A.线圈中感应电流的方向为abcdaB.线圈中的感应电动势为2nBL2ωC.穿过线圈的磁通量随时间的变化率最大D.线圈ad边所受安培力的大小为n2B2L1L2ωR,方向垂直纸面向里答案AC解析由
右手定则知图示位置线圈中感应电流的方向为abcda,故A正确。此时线圈中的感应电动势为E=nBL2L1ω,故B错误。此位置穿过线圈的磁通量为零,磁通量的变化率最大,故C正确。线圈ad边所受安培力大小为F=nBnBL2L1ωR·L2=n2B2L22L1ωR,
方向垂直纸面向里,故D错误。5.(人教版选择性必修第二册·P53·思考与讨论改编)某交变电流的i-t图像如图所示,则其电流的有效值为()A.1.5AB.2AC.145AD.285A答案C解析根据交流电的有效值的定义,让交变电流与恒定电流分
别通过阻值都为R的电阻,设恒定电流为I,在交流的一个周期内,当产生的热量相等时,有I21Rt1+I22Rt2=I2RT,其中t1=0.4s,t2=0.6s,T=1s,I1=1A,I2=2A,代入数据得I=145A,故C正确。考点1正弦式交流电的变
化规律及应用1.正弦式交流电产生过程中的两个特殊位置图示位置中性面位置与中性面垂直的位置特点B⊥SB∥SΦ=BS,最大Φ=0,最小e=nΔΦΔt=0,最小e=nΔΦΔt=nBSω,最大感应电流为零,方向改变感应电流最大,方向不变2.正弦式交变电流的变化规律(线圈在中性面位置时
开始计时)瞬时值表达式图像磁通量Φ=Φmcosωt=BScosωt电动势e=Emsinωt=NBSωsinωt电压u=Umsinωt=REmR+rsinωt电流i=Imsinωt=EmR+rsinωt3.书写交变电流瞬时值表达式的基本思路(1)求出角速
度ω,ω=2πT=2πf。(2)确定正弦式交变电流的峰值,根据已知图像读出或由公式Em=NBSω求出相应峰值。(3)明确线圈的初始位置,找出对应的函数关系式。如:①线圈从中性面位置开始转动,则i-t图像为正弦函数图像
,电流的瞬时值表达式为i=Imsinωt。②线圈从垂直中性面位置开始转动,则i-t图像为余弦函数图像,电流的瞬时值表达式为i=Imcosωt。例1(2020·北京市房山区二模)如图所示,a→b→c→d过程是交流发电机发电的示意图,下列说法正确的是()A.当线圈转到图a位置时,线圈
平面与磁感线垂直,磁通量变化率最大B.从图b开始计时,线圈中电流i随时间t变化的关系是i=ImsinωtC.当线圈转到图c位置时,感应电流最小,且感应电流方向将要改变D.当线圈转到图d位置时,感应电动势最小,ab边感应电流方向为b→a(1)当线圈转动到图b位置时,感应电动势最大还是最小
?提示:最大。(2)感应电流在什么位置改变方向?提示:中性面位置即穿过线圈的磁通量最大的位置。尝试解答选C。当线圈转到图a位置时,线圈处于中性面位置,线圈平面与磁感线垂直,穿过线圈的磁通量最大,磁通量的
变化率为0,A错误;图b中,线圈处于与中性面垂直的位置,此时线圈中产生的感应电流最大,故从图b开始计时,线圈中电流i随时间t变化的关系是i=Imcosωt,B错误;当线圈转到图c位置时,线圈处于中性面的位置,感应电
流最小,且感应电流的方向将要改变,C正确;当线圈转到图d位置时,ab、cd边切割磁感线的速度最大,故线圈中感应电动势最大,由右手定则可知,ab边感应电流方向为b→a,D错误。解决交变电流图像问题的四点注意(1)只有当线圈从中性面位置开始计时,电流的瞬时值表达式才是正弦函数形式,其变化规律与线圈的形
状及转动轴处于线圈平面内的位置无关。(2)注意峰值公式Em=NBSω中的S为线圈处于磁场中的有效面积。(3)在解决有关交变电流的图像问题时,应先把交变电流的图像与线圈的转动位置对应起来,再根据特殊位置求解。(4)根据法拉第电磁感应定
律E=nΔΦΔt,若Φ按余弦规律变化,则e必按正弦规律变化;若Φ按正弦规律变化,则e必按余弦规律变化,即Φ=Φmsinωt,e=nωΦmcosωt。故Φ增大时,e必减小;Φ最大时,e最小;Φ与e除系数不同外,二者具有“互余”关系。[变式1-1](多选)如图所示,闭合的正方形线圈abc
d在匀强磁场中绕垂直于磁感线的对称轴OO′匀速转动。为了使线圈中的感应电动势的最大值增大为原来的2倍,下列方法可行的是()A.仅把线圈改为圆形B.仅把转速变为原来的2倍C.仅把磁感应强度变为原来的2倍D.仅把转轴
移到cd位置答案BC解析线圈在匀强磁场中绕垂直于磁场的轴OO′做匀速圆周运动产生正弦式交流电,其电动势最大值Em=nBSω。仅把正方形线圈改为圆形,其面积由S=L2变为S′=π4L2π2=4L2π,线圈面积增大为原来的4π倍,线圈中感应电动势的最大值增大为原来
的4π倍,A错误;仅把线圈转速变为原来的2倍,线圈中感应电动势的最大值Em增大为原来的2倍,B正确;仅把磁感应强度变为原来的2倍,线圈中感应电动势的最大值Em增大为原来的2倍,C正确;线圈中感应电动势的最大值与转轴位置无关,D错误。[变式1-2](20
20·天津市部分区高三质量调查)一个矩形线圈在匀强磁场中匀速转动时的Φ-t图像如图所示,将此线圈与R=4Ω的电阻连接,R的功率为2π2W,不计线圈的电阻,下列说法正确的是()A.交变电流的频率为50HzB.t=0.5s时线圈中
的电流最大C.t=1s时线圈处于“中性面”位置D.线圈产生电动势的最大值是4πV答案D解析根据图像可知,该交变电流的周期为2s,故频率为0.5Hz,故A错误;t=0.5s时,穿过线圈的磁通量变化率为零,则线圈中的感应电动势为零,感应电流为零,故B错误;t=1s时
,穿过线圈的磁通量为零,线圈处于与“中性面”垂直的位置,故C错误;此线圈与R=4Ω的电阻连接,R的功率为2π2W,则该交变电流的有效值为I=PR=2π2A,线圈产生的电动势有效值为E=IR=22πV,最大值为Em=2E=4πV,故D正确。[变式1-3]为了研究交流电的
产生过程,小张同学设计了如下实验构思方案:第一次将单匝矩形线圈放在匀强磁场中,线圈绕中心转轴OO1按图甲所示方向匀速转动(ab向纸外,cd向纸内),并从图甲所示位置开始计时。此时产生的交变电流如图乙所示。第二次他仅将转轴移至ab边上,第三次他仅将转轴右侧的磁场去掉,
关于后两次的电流图像,下列说法正确的是()A.第二次是图1B.第二次是图3C.第三次是图2D.第三次是图4答案D解析由题知三次实验线圈转动的角速度ω相同,且均产生完整的正弦式交流电,所产生的交流电周期T相同。设ab边长为l1,bc边长为l2,则三次产生的交流电的电动势最大值分别为Em
1=Bl1l2ω,Em2=Bl1l2ω,Em3=12Bl1l2ω,由此可知Em2=Em1,Em3=12Em1。综上所述,第二次的电流图像与第一次的相同,即图2,第三次的电流峰值是第一次的12,即图4,只有D项正确。考点2交流电有效值的计算1.交流电有效值的求解
(1)公式法利用E=Em2、U=Um2、I=Im2计算,只适用于正弦式交变电流。(2)定义法(非正弦式电流)计算时要抓住“三同”:“相同时间”内“相同电阻”上产生“相同热量”,列式求解,注意时间至少取一个周期或为周期的整数倍。2.几种典型的电流及其有效值名称电流(电压)图像有效值
正弦式交变电流I=Im2U=Um2正弦半波电流I=Im2U=Um2正弦单向脉动电流I=Im2U=Um2矩形脉动电流I=t1TI1U=t1TU1非对称性交变电流I=12I21+I22U=12U21+U22例2(2020·浙江省“山水联盟”模拟)现在市场上的调光台灯、调速风扇是用可控硅电子元
件来实现调节的。如图为一个经过元件调节后加在电灯上的电压,在正弦式交流电的每半个周期中都截去了前面的四分之一。现在加在电灯上的电压是()A.UmB.Um2C.Um4D.Um2(1)加在电灯上的电压是指交流电的什么值
?提示:有效值。(2)如何求加在电灯上的电压?提示:根据电流的热效应及正弦式交流电的有效值求解。尝试解答选D。使该交流电与一恒定电流分别通过相同电阻R,设该恒定电流的电压为U,交流电在一个周期内产生的热量为:Q1=Um22R·T2,恒定电流在一个周期内产生的
热量为:Q2=U2RT,由Q1=Q2,得U=Um2,则该交流电电压的有效值为Um2,即为加在电灯上的电压,故D正确,A、B、C错误。(1)高中阶段可以定量求解有效值的只有正弦式交变电流(或其一部分)、方波式电流及其组合。(2)遇到完整的正弦(余弦)函数图像
,如正弦单向脉动电流,有效值可根据I=Im2,E=Em2,U=Um2求解。(3)正弦半波、矩形脉动等电流只能利用电流的热效应计算有效值。(4)其他情况的有效值一般不能进行定量计算,但有的可以与正弦式交变电流的有效值定性比较。如图1交变电流与如图2正
弦式交变电流比较,可知其有效值小于22Im。[变式2]一个匝数为100匝、电阻为0.5Ω的闭合线圈处于某一磁场中,磁场方向垂直于线圈平面,从某时刻起穿过线圈的磁通量按如图所示规律变化。则线圈中产生的交变电流的有效值为()A.52AB.25AC.6AD.5
A答案B解析由题图可知,0~1s内线圈中产生的感应电动势E1=nΔΦ1Δt1=100×0.011V=1V,1~1.2s内线圈中产生的感应电动势E2=nΔΦ2Δt2=100×0.010.2V=5V,由电流的热效应有:E21RΔt1+E22RΔt2=I2
RT,T=Δt1+Δt2,联立并代入数据解得I=25A,故B正确。考点3交变电流的“四值”的比较交变电流的瞬时值、峰值、有效值和平均值的比较物理量物理含义重要关系适用情况及说明瞬时值交变电流某一时刻的值
e=Emsinωtu=Umsinωti=Imsinωt(适用于正弦式交变电流)计算线圈某时刻的受力情况峰值最大的瞬时值Em=NBSω(适用于正弦式交变电流)Um=REmR+rIm=EmR+r讨论电容器的击穿电压有效值跟交变电流的热效应E=Em2(1)计算与电流的热效等效的
恒定电流的值U=Um2I=Im2(适用于正弦式交变电流)应有关的量(如电功、电功率、电热等)(2)电器设备“铭牌”上所标的额定电流、额定电压一般是指有效值(3)保险丝的熔断电流为有效值(4)交流电压表和电流表的读数为有效值平均值交变电流图像中图线与时间轴所
围的面积与时间的比值E=BlvE=nΔΦΔtU=RER+rI=ER+r计算通过电路导体截面的电荷量例3(2020·山东省聊城市二模)如图所示,磁极N、S间的磁场可看作匀强磁场,磁感应强度大小为B0,矩形线圈ABCD的面积为S,线圈共n匝,电阻为r,线
圈通过滑环与理想交流电压表V和阻值为R的定值电阻相连,AB边与滑环E相连,CD边与滑环F相连。线圈绕垂直于磁感线的轴OO′以角速度ω逆时针匀速转动,图示位置恰好与磁感线方向垂直。以下说法正确的是()A.线圈在图示位置时,电阻R
中的电流方向为从M到NB.线圈从图示位置开始转过180°的过程中,通过电阻R的电荷量为2B0SR+rC.线圈转动一周的过程中克服安培力做的功为ωπn2B20S2R+rD.线圈在图示位置时电压表示数0(1)求电压表示数时用交流电的什么值?提示:有效值。
(2)求通过电阻R的电荷量时用交流电的什么值?提示:平均值。尝试解答选C。线圈在图示位置时,穿过线圈的磁通量最大,此时线圈中的感应电流为0,故A错误;线圈自图示位置开始转过180°的过程中,通过电阻R的电荷量为q=IΔt=ER+rΔ
t=nΔΦΔtR+rΔt=2nB0SR+r,故B错误;由功能关系可知,线圈转动一周的过程中克服安培力做的功等于回路中产生的热量,即W安=Q=I2(R+r)T=Em2R+r2(R+r)2πω=nB0Sω2R+r2(R+r)2πω=πωn2B20S2R+r,故C正
确;电压表的示数为交变电流的有效值,线圈转动过程中,电压表示数不变,不为0,故D错误。解决交变电流“四值”问题的关键(1)涉及到交流电表的读数、功、功率、热量都用有效值。(2)涉及计算通过截面的电荷量用平均值。(3)涉及电容器的击穿电压考虑峰值。(4)涉及电流、电压随时间变化的规律时,即
与不同时刻有关,考虑瞬时值。[变式3](2020·陕西省渭南市教学质量检测)一气体放电管,当其两电极间的电压超过5003V时,就放电而发光,在它发光的情况下逐渐降低电压,要降到500V时才熄灭。放电管两电极不分正负。现有一正弦交流电源,输出电压峰值为1000V,频率为
50Hz,若用它给上述放电管供电,则在一小时内放电管实际发光的时间为()A.15分钟B.25分钟C.30分钟D.45分钟答案C解析根据题意该交流电电压的瞬时值表达式为U=Umsin2πft=1000sin100πt(V),在前半个周期内,当t=T6时开始发光,
t=5T12时停止发光,发光时间为Δt=5T12-T6=T4,整个周期的发光时间为t=2Δt=T2,故一个小时内的发光时间为t0=3600sT×T2=1800s=30min,故C正确,A、B、D错误。1.(2019·天津高考)(多选)单匝闭合矩形线框电阻为R,在匀强磁场中绕与磁感线垂直的轴匀速
转动,穿过线框的磁通量Φ与时间t的关系图象如图所示。下列说法正确的是()A.T2时刻线框平面与中性面垂直B.线框的感应电动势有效值为2πΦmTC.线框转一周外力所做的功为2π2Φ2mRTD.从t=0到t=T4过程中线框的平均感应电
动势为πΦmT答案BC解析中性面的特点是与磁场垂直,线框位于中性面时,穿过线框的磁通量最大,磁通量变化率最小,则T2时刻线框所在平面与中性面重合,A错误;感应电动势最大值为Em=Φmω=Φm2πT,对正弦式交流电
,感应电动势有效值E有=Em2=2πΦmT,B正确;由功能关系知,线框转一周外力做的功等于产生的电能,W=E电=E2有R·T=2π2Φ2mRT,C正确;由法拉第电磁感应定律知,从t=0到t=T4过程中线框的平均感应电动势E=ΔΦΔt=ΦmT4=4ΦmT,D错误。2
.(2018·全国卷Ⅲ)一电阻接到方波交流电源上,在一个周期内产生的热量为Q方;若该电阻接到正弦交变电源上,在一个周期内产生的热量为Q正。该电阻上电压的峰值为u0,周期为T,如图所示。则Q方∶Q正等于()A.1∶2B.2∶1C.1∶2D.2∶1答案D解析根据题述,正弦交变电流的电
压有效值为u02,而方波交流电的有效值为u0,根据焦耳定律和欧姆定律,Q=I2RT=U2RT,可知在一个周期T内产生的热量与电压有效值的二次方成正比,Q方∶Q正=u20∶u022=2∶1,D正确。3.(2017·天津高考)(多选)在匀强磁
场中,一个100匝的闭合矩形金属线圈,绕与磁感线垂直的固定轴匀速转动,穿过该线圈的磁通量随时间按图示正弦规律变化。设线圈总电阻为2Ω,则()A.t=0时,线圈平面平行于磁感线B.t=1s时,线圈中的电流改变方向C.
t=1.5s时,线圈中的感应电动势最大D.一个周期内,线圈产生的热量为8π2J答案AD解析t=0时,Φ=0,故线圈平面平行于磁感线,A正确;线圈每经过一次中性面电流的方向改变一次,线圈经过中性面时,磁通量最大,故在t=0.5s、1.5s
时线圈中的电流改变方向。在t=1s时线圈平面平行于磁感线,线圈中的电流方向不变,B错误;线圈在磁场中转动,磁通量最大时,感应电动势为0,磁通量为0时,感应电动势最大,故t=1.5s时,感应电动势为0,C错误;线圈中感应电动势的最大值Em=nBSω=nωΦm=n2πTΦm=100×2
π2×0.04V=4πV,有效值E=Em2=22πV,故在一个周期内线圈产生的热量Q=E2RT=22π22×2J=8π2J,D正确。4.(2016·全国卷Ⅲ)(多选)如图,M为半圆形导线框,圆心为OM;N是圆心角为直角的扇形导
线框,圆心为ON;两导线框在同一竖直面(纸面)内;两圆弧半径相等;过直线OMON的水平面上方有一匀强磁场,磁场方向垂直于纸面。现使线框M、N在t=0时从图示位置开始,分别绕垂直于纸面、且过OM和ON的轴,以相同的周期T逆时针匀速转动,则()A.两导线框中均会产生正弦交流电B
.两导线框中感应电流的周期都等于TC.在t=T8时,两导线框中产生的感应电动势相等D.两导线框的电阻相等时,两导线框中感应电流的有效值也相等答案BC解析本题中导线框的半径旋转切割磁感线时产生大小不变的感应电流,故A项错误;两导线框
产生的感应电流的周期与线框转动周期相同,B项正确;在t=T8时,两导线框切割磁感线的导线长度相同,且切割速度大小相等,故产生的感应电动势相等,均为E=12BR2ω,C项正确;两导线框中感应电流随时间变化的图象如图所示,故两导线框中感应电流的有效值不相等,D
项错误。5.(2021·浙江1月选考)(多选)发电机的示意图如图甲所示,边长为L的正方形金属框,在磁感应强度为B的匀强磁场中以恒定角速度绕OO′轴转动,阻值为R的电阻两端的电压如图乙所示。其它电阻不计,图乙中的Um为已知量。则金属框转动一周()A.框内电流方向不变B.电
动势的最大值为UmC.流过电阻的电荷量q=2BL2RD.电阻产生的焦耳热Q=πUmBL2R答案BD解析当金属框转动时,每次经过中性面框内电流方向都要变化一次,A错误;由图乙可知,电动势的最大值为Um,B正确;金属框转动一周,流过电阻的电荷量为q=IΔt=ERΔt=ΔΦR=0,故C错误;
因为Um=BωL2,则ω=UmBL2,金属框转过一周电阻产生的焦耳热Q=U2RT=Um22R·2πω=πUmBL2R,D正确。时间:40分钟满分:100分一、选择题(本题共9小题,每小题9分,共81分。其中1~6题为单选,7~9题为多选)1.图中闭合线圈都在匀强磁场
中绕虚线所示的固定转轴匀速转动,不能产生正弦式交变电流的是()答案C解析只要闭合线圈绕线圈平面内垂直磁感线的轴匀速转动,就能产生正弦式交流电,与轴的位置、线圈的形状无关。除C项的轴与磁感线平行外,其他选项的轴都与磁感线垂直。故C正确,A、B、D错误。2.(2020·北京市朝阳区一模)图甲是小型交
流发电机的示意图,两磁极N、S间的磁场可视为水平方向的匀强磁场,A为交流电流表。线圈绕垂直于磁场的水平轴OO′沿逆时针方向匀速转动,从图甲所示位置开始计时,产生的交变电流随时间变化的图像如图乙所示。下列说法正确的是()A.电流表的示数为20AB.线圈转动的角速度为50πrad/sC.t=0.0
1s时,穿过线圈的磁通量为零D.t=0.02s时,线圈平面与磁场方向垂直答案C解析电流表的示数为线圈中感应电流的有效值,则I=Im2=1022A=10A,故A错误;由图乙可知,该交流电的周期T=0.02s,则线圈转动的角速度为ω=2πT=2π0.02rad/s=100πrad/s,故B错误
;由图乙可知,t=0.01s和t=0.02s时,感应电流都最大,则线圈都处于与中性面垂直的位置,穿过线圈的磁通量都为零,故C正确,D错误。3.(2021·八省联考福建卷)一手摇交流发电机线圈在匀强磁场中匀速转动,转轴位于线圈平面内,并与磁场方向垂直,产生的交变电流i随时间t变化关系如图
所示,则()A.该交变电流频率是0.4HzB.该交变电流有效值是0.8AC.t=0.1s时,穿过线圈的磁通量最小D.该交变电流瞬时值表达式是i=0.82sin5πt(A)答案C解析由题图可知该交变电流的周期为0.4s,则频率f
=1T=2.5Hz,故A错误;该交变电流的有效值I=Im2=0.8A2≈0.57A,故B错误;t=0.1s时,该交变电流的瞬时值最大,线圈位于中性面的垂面位置,穿过线圈的磁通量最小,故C正确;线圈转动的角速度ω=2
πf=5πrad/s,则该交变电流的瞬时值表达式为i=0.8sin5πt(A),故D错误。4.(2020·天津市红桥区期末)如图所示,电阻为r的矩形线圈在匀强磁场中绕垂直于磁场的轴以某一角速度ω匀速转动。t=0时,线圈平面与磁场垂直,各电表均为理想交流电表,则()A.t=0时,线圈中
的感应电动势最大B.1s内电路中的电流方向改变了ω2π次C.滑片P向下滑动时,电压表的读数变大D.线圈匀速转动的角速度ω变为原来的2倍时,电阻R的电功率也变为原来的2倍答案C解析t=0时,线圈平面与磁场垂直,处于中性面位置,线圈中的感应电动势为零,A错误;交流电的频率为f=ω2π,1s内电流方向
改变2f次,即1s内电路中的电流方向改变了ωπ次,B错误;滑片P向下滑动时,滑动变阻器接入电路中的电阻增大,电路总电阻增大,电流减小,电源内阻分压减小,所以路端电压变大,电压表读数变大,C正确;根据Em=NBSω,以及电阻R两端电压的有效值U=22Um=2E
mR2R+r,若ω增大为原来的2倍,则电阻R两端的电压变为原来的2倍,由P=U2R可知,R的电功率变为原来的4倍,D错误。5.如图所示,在磁极和圆柱状铁芯间形成的两部分磁场区域的圆心角α均为49π,
磁感应强度均沿半径方向,半径为L2处的磁感应强度大小均为B。单匝矩形线圈abcd的宽ab=L,长bc=2L,线圈绕中轴线以角速度ω匀速转动时对外电阻R供电。若线圈电阻为r,电流表内阻不计,则下列说法正确的是()A.线圈转动时将产生正弦式交流电B.从图位置开始转过90°角时,电流方向将
发生改变C.线圈转动过程中穿过线圈的磁通量的变化率不变D.电流表的示数为4BL2ω3R+r答案D解析bc边在上方磁场中切割磁感线时,线圈中感应电流方向为c→b→a→d→c,感应电动势大小为E=2B·2L·L2ω=2BL2ω,同理,bc边在下方磁场中切割磁感线时,线圈中感
应电流方向为b→c→d→a→b,感应电动势大小仍为E=2BL2ω,所以线圈连续转动时,流过电阻R的电流是交流电,但线圈切割磁感线时感应电流的大小不变,产生的不是正弦式交流电,故A错误;从图示位置开始转动90
°角时,电流方向不发生改变,故B错误;线圈转动过程中,产生交流电,感应电动势变化,故穿过线圈的磁通量的变化率变化,故C错误;一个周期内,电流不为0的时间为:t=2α2πT=49T,有电流时的电流值为I=ER+r=2BL2ωR+r,由有效值的定
义有I2R·49T=I2有效R·T,解得电流的有效值即电流表的示数为I有效=4BL2ω3R+r,故D正确。6.如图所示区域内存在匀强磁场,磁场的边界由x轴和y=2sinπ2x曲线围成(0≤x≤2m),现把一边长为2m
的正方形单匝线框以水平速度v=10m/s匀速地拉过该磁场区,磁场区的磁感应强度为0.4T,线框电阻R=0.5Ω,不计一切摩擦阻力,则()A.水平拉力F的最大值为8NB.拉力F的最大功率为12.8WC.拉力F要做25.6J的功才能让线框通过此磁场区D.拉力F要做12.8J
的功才能让线框通过此磁场区答案C解析设线框的边长为l,线框匀速通过磁场区,产生的感应电流先增大后减小,形成与正弦交流电前半个周期变化相同的电流,通过该区的时间t=2lv=0.4s,线框中感应电动势最大值为E
m=Blv=8V,有效值为E=42V,感应电流最大值为Im=EmR=16A,有效值为I=82A,则水平拉力最大值为Fm=BIml=12.8N,A错误;拉力的最大功率为Pm=Fmv=128W,B错误;线框匀速通过,拉力做的
功等于线框产生的焦耳热,即W=Q=I2Rt=25.6J,C正确,D错误。7.如图甲所示是一种振动发电装置的示意图,半径为r=0.1m、匝数n=20的线圈位于辐向分布的磁场中,磁场的磁感线均沿半径方向均匀分布
(其右视图如图乙所示),线圈所在位置的磁感应强度的大小均为B=0.20πT,线圈电阻为R1=0.5Ω,它的引出线接有R2=9.5Ω的小电珠L,外力推动线圈框架的P端,使线圈沿轴线做往复运动,线圈运动速度v随时间t变化的规律如图丙所示(摩擦等损耗不计,图丙为正弦函数图线),则()A.小电
珠中电流的峰值为0.16AB.小电珠中电流的有效值为0.16AC.电压表的示数约为1.5VD.t=0.01s时外力的大小为0.128N答案AD解析由题意及法拉第电磁感应定律可知,线圈在磁场中做往复运动,产生的感应电动势随时间按正弦规律变化,线圈中的感应电动势的峰值为Em=nB
·2πrvm,故小电珠中电流的峰值为Im=EmR1+R2=20×0.20π×2π×0.1×20.5+9.5A=0.16A,有效值为I=Im2=0.082A,A正确,B错误;电压表示数为U=I·R2≈1.07V,C错误;当t=0.01s=T4时,由图丙知线圈的加速度为0,则此时
外力大小等于线圈所受安培力大小,所以此时外力的大小为F=nB·2πrIm=0.128N,D正确。8.(2020·天津市塘沽一中二模)如图所示,线圈ABCD匝数n=10,面积S=0.4m2,边界MN(与线圈的AB边重合)右侧存在磁感应强度B=2πT的匀强磁场,若线圈从图示
位置开始绕AB边以ω=10πrad/s的角速度匀速转动,则以下说法正确的是()A.线圈产生的是正弦式交流电B.线圈在转动过程中产生的最大感应电动势为80VC.线圈转动160s时瞬时感应电动势为403VD.线圈产生的感应电动势的有效值为40V答案BD解析根据题
意,从图示位置开始计时,0~T4,线圈产生的是正弦式电流,T4~T2以及T2~3T4,线圈不产生感应电流,T4~T,线圈产生正弦式电流,i-t图像如图所示,故A错误;线圈转动过程中产生的感应电动势最大值Em=nBSω=80V,故B正确;线圈转动160s时,转过π6rad,瞬时感应电动势为e=E
msinπ6=40V,故C错误;在一个周期内,只有半个周期产生感应电动势,根据有效值的定义有Em2R2R·T2=ER2RT,可得线圈产生的感应电动势的有效值E=Em2=40V,故D正确。9.(2020·山东省东营一中下学期开学考试)如图所示,正方形单匝线框abc
d边长为L,每边电阻均为r,在磁感应强度为B的匀强磁场中绕cd边以角速度ω匀速转动,c、d两点与外电路相连,外电路电阻也为r,导线电阻忽略不计,则下列说法中正确的是()A.从图示位置开始计时,线框感应电动势的瞬时值表达式为e=BωL2cos
ωtB.S断开时,电压表读数为28BωL2C.初始S闭合,现将S断开,电压表读数不变D.S闭合时,线框从图示位置转过π2过程中流过电流表的电荷量为BL27r答案ABD解析图示线框平面与中性面垂直,此时线框产生的感应电动势最大,则从图示位置开始计时,线框
abcd产生的感应电动势的瞬时值表达式为e=Emcosωt=BωL2cosωt,A正确;感应电动势的有效值E=Em2=BωL22,当S断开时,根据闭合电路欧姆定律可知通过线框的电流的有效值为I=E4r=BωL242r,电压表测量cd边两端电压,则电压表示数为U=I
r=BωL242r·r=2BωL28,B正确;S闭合后,电路中总电阻为3r+r2r+r=72r,根据闭合电路欧姆定律可知电压表示数为U′=E72r·r2=2BωL214,C错误;S闭合时,线框从图示位置转过π2过程中流过干路的总电荷量q=I·Δt=E72r·Δt
=ΔΦΔt72r·Δt=BL272r=2BL27r,根据并联电路分流规律可知流过电流表的电荷量为qA=12q=BL27r,D正确。二、非选择题(本题共1小题,共19分)10.(19分)如图所示,一个半径为r的半圆形线圈,以直径ab为轴匀速转动,转速为n,ab的左侧有垂直于纸面向里(与ab垂直)的匀
强磁场,磁感应强度为B。M和N是两个集流环,负载电阻为R,线圈、电流表和连接导线的电阻不计,求:(1)感应电动势的最大值;(2)从图示位置起转过14圈的时间内,负载电阻R上产生的热量;(3)从图示位置起转过14圈的时间内,通过负载电阻R的电荷量;(4)电流表的示数。答案(1)π2
Bnr2(2)π4B2r4n8R(3)πBr22R(4)π2r2nB2R解析(1)线圈绕轴匀速转动时,在电路中产生如图所示的交变电流。此交变电流电动势的最大值为Em=BSω=B·πr22·2πn=π2Bnr2。(2)在线圈从图示位置转过14圈的时间内,电动势的有效值为E=Em2
=2π2Bnr22电阻R上产生的热量为Q=ER2·R·T4=E2R·14n=π4B2r4n8R。(3)在线圈从图示位置转过14圈的时间内,电动势的平均值为E=ΔΦΔt通过R的电荷量q=I·Δt=ER·Δt
=ΔΦR=πBr22R。(4)设此交变电动势的有效值为E′,由有效值的定义得Em22R·T2=E′2RT,解得E′=Em2故电流表的示数为I=E′R=π2r2nB2R。