高考数学二轮复习课时跟踪检测13概率统计统计案例小题练 理数(含答案)

DOC
  • 阅读 20 次
  • 下载 0 次
  • 页数 9 页
  • 大小 186.000 KB
  • 2022-11-30 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
高考数学二轮复习课时跟踪检测13概率统计统计案例小题练 理数(含答案)
可在后台配置第一页与第二页中间广告代码
高考数学二轮复习课时跟踪检测13概率统计统计案例小题练 理数(含答案)
可在后台配置第二页与第三页中间广告代码
高考数学二轮复习课时跟踪检测13概率统计统计案例小题练 理数(含答案)
可在后台配置第三页与第四页中间广告代码
高考数学二轮复习课时跟踪检测13概率统计统计案例小题练 理数(含答案)
高考数学二轮复习课时跟踪检测13概率统计统计案例小题练 理数(含答案)
还剩1页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 9
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】高考数学二轮复习课时跟踪检测13概率统计统计案例小题练 理数(含答案).doc,共(9)页,186.000 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-75687.html

以下为本文档部分文字说明:

课时跟踪检测(十三)概率、统计、统计案例(小题练)A级——12+4提速练一、选择题1.(2018·长春模拟)已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为()A.95,94B.92,86

C.99,86D.92,91解析:选B由茎叶图可知,此组数据由小到大排列依次为76,79,81,83,86,86,87,91,92,94,95,96,98,99,101,103,114,共17个,故92为中位数,出现次数最多的为众数,故众数为86,故选B.2.在样本

的频率分布直方图中,共有4个小长方形,这4个小长方形的面积由小到大依次构成等比数列{an}(n=1,2,3,4).已知a2=2a1,且样本容量为300,则小长方形面积最小的一组的频数为()A.20B.40C.30D.无法确定解析:选A由已知,得4个小长方形的面积分别为a1,2a1,4

a1,8a1,所以a1+2a1+4a1+8a1=1,得a1=115,因此小长方形面积最小的一组的频数为115×300=20.3.(2018·许昌二模)某校共有在职教师140人,其中高级教师28人,中级教

师56人,初级教师56人,现采用分层抽样的方法从在职教师中抽取5人进行职称改革调研,然后从抽取的5人中随机抽取2人进行深入了解,则抽取的这2人中至少有1人是初级教师的概率为()A.710B.310C.320D.720解析:选A由题意得,应从高级、中级、初级教师中抽取的人数分别为5

×28140=1,5×56140=2,5×56140=2,则从5人中随机抽取2人,这2人中至少有1人是初级教师的概率为C12C13+C22C25=710.4.(2018·昆明模拟)如图是1951~2016年我国的

年平均气温变化的折线图,根据图中信息,下列结论正确的是()A.1951年以来,我国的年平均气温逐年增高B.1951年以来,我国的年平均气温在2016年再创新高C.2000年以来,我国每年的年平均气温都高于1981~2010年的平均值D.2000年以来,我国的年平均气

温的平均值高于1981~2010年的平均值解析:选D由图可知,1951年以来,我国的年平均气温变化是有起伏的,不是逐年增高的,所以选项A错误;1951年以来,我国的年平均气温最高的不是2016年,所以选项B错误;由图可知,1981~2010年的气温平

均值为9.5,2012年的年平均气温低于1981~2010年的平均值,所以选项C错误;2000年以来,我国的年平均气温的平均值高于1981~2010年的平均值,所以选项D正确.5.(2018·全国卷Ⅱ)我国数学家陈景润在哥德

巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.118解

析:选C不超过30的所有素数为2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C210=45种情况,而和为30的有7+23,11+19,13+17这3种情况,∴所求概率为345=115.故选C.6.(2018·合肥一模)某广播电台只在每小时的整点和半点

开始播放新闻,时长均为5分钟,则一个人在不知道时间的情况下打开收音机收听该电台,能听到新闻的概率是()A.114B.112C.17D.16解析:选D由题意知,该广播电台在一天内播放新闻的时长为24×2×5=240分钟,即4个小时,所以所求的概率为424=16,故选D.7.(2018·

石家庄模拟)某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为()A.110B.15C.25D.12解析

:选C设“开关第一次闭合后出现红灯”为事件A,“开关第二次闭合后出现红灯”为事件B,则“开关两次闭合后都出现红灯”为事件AB,“开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯”为事件B|A,由题意得P(B|

A)=PABPA=25,故选C.8.(2019届高三·辽宁五校联考)为考察某种药物对预防禽流感的效果,在四个不同的实验室取相同的个体进行动物试验,根据四个实验室得到的列联表画出如下四个等高条形图,最能体现该药物对预防禽流感有显著效果的图形是()解析:

选D分析四个等高条形图得选项D中,不服用药物与服用药物患病的差异最大,所以最能体现该药物对预防禽流感有显著效果,故选D.9.(2018·郑州、湘潭联考)已知a∈{-2,0,1,2,3},b∈{3,5},则函数f(x)=(a2-2)ex+b为减函数的概

率是()A.310B.35C.25D.15解析:选C由题意知a,b的组合共有10种,函数f(x)=(a2-2)ex+b为减函数,则a2-2<0,又a∈{-2,0,1,2,3},故只有a=0,a=1满足题意,又b∈{3,5},所以当a=0时,b可取3,5;当a=1时,

b可取3,5,满足题意的组合有4种,所以函数f(x)=(a2-2)ex+b为减函数的概率是410=25.故选C.10.为比较甲、乙两地某月11时的气温情况,随机选取该月中的5天,将这5天中11时的气温数据(单位:℃)制成如图所示的茎叶图,给出以下结论:①甲地该月11时的平均气温

低于乙地该月11时的平均气温;②甲地该月11时的平均气温高于乙地该月11时的平均气温;③甲地该月11时的气温的标准差小于乙地该月11时的气温的标准差;④甲地该月11时的气温的标准差大于乙地该月11时的气温的标准

差.其中根据茎叶图能得到的正确结论的编号为()A.①③B.①④C.②③D.②④解析:选C由茎叶图和平均数公式可得甲、乙两地的平均数分别是30,29,则甲地该月11时的平均气温高于乙地该月11时的平均气温,①错误,②正确,排除A和B;又甲、乙两地该月11时的标准差分别是s甲=4+1+1

+45=2,s乙=9+1+4+45=185,则甲地该月11时的气温的标准差小于乙地该月11时的气温的标准差,③正确,④错误,故选项C正确.11.由不等式组x≤0,y≥0,y-x-2≤0确定的平面

区域记为Ω1,不等式组x+y≤1,x+y≥-2确定的平面区域记为Ω2.在Ω1中随机取一点,则该点恰好在Ω2内的概率为()A.18B.14C.34D.78解析:选D由题意作图,如图所示,Ω1的面积为12×2×2=2,

图中阴影部分的面积为2-12×12×1=74,则所求的概率P=742=78.12.(2018·内蒙古包头铁路一中调研)甲、乙、丙三人参加一次考试,他们合格的概率分别为23,34,25,那么三人中恰有两人合格的

概率是()A.25B.1130C.715D.16解析:选C三人中恰有两人合格的概率P=23×34×1-25+23×1-34×25+1-23×34×25=715,故选C.二、填空题13.(2018·南昌模拟)某校高三(2)班现有64名学生,随机编号为0,1,2,„

,63,依编号顺序平均分成8组,组号依次为1,2,3,„,8.现用系统抽样方法抽取一个容量为8的样本,若在第1组中随机抽取的号码为5,则在第6组中抽取的号码为________.解析:由题知分组间隔为648=8,又第1组中抽取的号码为5,所以

第6组中抽取的号码为5×8+5=45.答案:4514.(2018·天津和平区调研)从混有5张假钞的20张百元钞票中任意抽取两张,将其中一张放到验钞机上检验发现是假钞,则两张都是假钞的概率是________.解析:设事件A为“抽

到的两张都是假钞”,事件B为“抽到的两张至少有一张假钞”,则所求的概率为P(A|B),因为P(AB)=P(A)=C25C220=119,P(B)=C25+C15C115C220=1738,所以P(A|B)=PABPB=1191738=217.答案:21715.某篮球

比赛采用7局4胜制,即若有一队先胜4局,则此队获胜,比赛就此结束.由于参加比赛的两队实力相当,每局比赛两队获胜的可能性均为12.据以往资料统计,第一局比赛组织者可获得门票收入40万元,以后每局比赛门票收入比上一局增加10万元

,则组织者在此次比赛中获得的门票收入不少于390万元的概率为________.解析:依题意,每局比赛获得的门票收入组成首项为40,公差为10的等差数列,设此数列为{an},则易知首项a1=40,公差d=10,故Sn=40n+nn-2×10=5n2+35n.由S

n≥390,得n2+7n≥78,所以n≥6.所以要使获得的门票收入不少于390万元,则至少要比赛6局.①若比赛共进行6局,则P6=C35×125=516;②若比赛共进行了7局,则P7=C36×126=516.所以门票收入不少于390万元的概率

P=P6+P7=1016=58.答案:5816.(2018·石家庄摸底)为了判断高中三年级学生选修文理科是否与性别有关,现随机抽取50名学生,得到2×2列联表:理科文科总计男131023女72027总计203050

已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根据表中数据,得到K2=-223×27×20×30≈4.844,则认为选修文理科与性别有关系出错的可能性约为________.解析:由K2=4.844>3.841.故认为选修文理

科与性别有关系出错的可能性约为5%.答案:5%B级——难度小题强化练1.(2018·成都模拟)小明在花店定了一束鲜花,花店承诺将在第二天早上7:30~8:30之间将鲜花送到小明家.若小明第二天离开家去公司上班的时间在早上8:00~9:00之间,则小明在离开家之前收到这束鲜花的概

率是()A.18B.14C.34D.78解析:选D如图,设送花人到达小明家的时间为x,小明离家去上班的时间为y,记小明离家前能收到鲜花为事件A.(x,y)可以看成平面中的点,试验的全部结果所构成的区域为Ω={(x,y)|7.5≤x≤8.5,8≤y≤9},这是一个正方形区域,面积

为SΩ=1×1=1,事件A所构成的区域为A={(x,y)|y≥x,7.5≤x≤8.5,8≤y≤9},即图中的阴影部分,面积为SA=1-12×12×12=78.这是一个几何概型,所以P(A)=SASΩ=7

8,故选D.2.(2018·福州四校联考)某汽车的使用年数x与所支出的维修总费用y的统计数据如下表:使用年数x/年12345维修总费用y/万元0.51.22.23.34.5根据上表可得y关于x的线性回归方程y^=b^x-0.69,若该汽车维修总费用超过10万元就不再维修,

直接报废,据此模型预测该汽车最多可使用(不足1年按1年计算)()A.8年B.9年C.10年D.11年解析:选D由y关于x的线性回归直线y^=b^x-0.69过样本点的中心(3,2.34),得b^=1.01,即线性回归方程为y^=1.01

x-0.69,由y^=1.01x-0.69=10得x≈10.6,所以预测该汽车最多可使用11年,故选D.3.(2018·长春模拟)如图所示是某学校某年级的三个班在一学期内的六次数学测试的平均成绩y关于测试序号x的函数图象,为了容易看出一个班级的成绩变化,将离散的点用虚线连接,根据

图象,给出下列结论:①一班成绩始终高于年级平均水平,整体成绩比较好;②二班成绩不够稳定,波动程度较大;③三班成绩虽然多数时间低于年级平均水平,但在稳步提升.其中正确结论的个数为()A.0B.1C.2D.3解析:选D①由图可知一班每次考试的平均成绩都在年级平均成绩之上,故①正确.②

由图可知二班平均成绩的图象高低变化明显,可知成绩不稳定,波动程度较大,故②正确.③由图可知三班平均成绩的图象呈上升趋势,并且图象的大部分都在年级平均成绩图象的下方,故③正确.故选D.4.(2018·郑州模拟)我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国

高中数学联赛(河南初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数a,b满足a,G,b成等差数列且x,G,y成等比数列,则1a+4b的最小值为()A.49B.2C.94D.9解析:选C由甲班学生成

绩的中位数是81,可知81为甲班7名学生的成绩按从小到大的顺序排列的第4个数,故x=1.由乙班学生成绩的平均数为86,可得(-10)+(-6)+(-4)+(y-6)+5+7+10=0,解得y=4.由x,G,y成等比数列,可得G2=xy=4,由正实数a,b满足a,G,b成等差数列,可得G=2,a+

b=2G=4,所以1a+4b=1a+4b×a4+b4=141+ba+4ab+4≥14×(5+4)=94(当且仅当b=2a时取等号).故1a+4b的最小值为94,选C.5.正六边形ABCDEF的边长为1,在正六边形内随机取点M,则使△MA

B的面积大于34的概率为________.解析:如图所示,作出正六边形ABCDEF,其中心为O,过点O作OG⊥AB,垂足为G,则OG的长为中心O到AB边的距离.易知∠AOB=360°6=60°,且OA=OB,所以△AOB是等边三角形,所以OA=OB=AB=1,OG=OA·sin60°=1×32=

32,即对角线CF上的点到AB的距离都为32.设△MAB中AB边上的高为h,则由S△MAB=12×1×h>34,解得h>32.所以要使△MAB的面积大于34,只需满足h>32,即需使M位于CF的上方.故由几何概型得,△MAB的面积大于34的概率P=S梯形CDEFS正六边形AB

CDEF=12.答案:126.某班运动队由足球运动员18人、篮球运动员12人、乒乓球运动员6人组成(每人只参加一项),现从这些运动员中抽取一个容量为n的样本,若分别采用系统抽样法和分层抽样法,则都不用剔除个体;当样本容量为n+1时,若采用系统抽样法,则需要剔除1个个体,那么样本容量n为_____

___.解析:总体容量为6+12+18=36.当样本容量为n时,由题意可知,系统抽样的抽样距为36n,分层抽样的抽样比是n36,则采用分层抽样法抽取的乒乓球运动员人数为6×n36=n6,篮球运动员人数为12×n36=n3,足球运动员

人数为18×n36=n2,可知n应是6的倍数,36的约数,故n=6,12,18.当样本容量为n+1时,剔除1个个体,此时总体容量为35,系统抽样的抽样距为35n+1,因为35n+1必须是整数,所以n只能取6,即样本容量n为6.答案:6

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 111
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?