【文档说明】福建省南平市2020届高三毕业班第三次综合质量检测 数学(文)(含答案).doc,共(13)页,1.010 MB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-68341.html
以下为本文档部分文字说明:
南平市2019-2020学年高中毕业班第三次综合质量检查文科数学试题答案及评分参考说明:1、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.2
、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3、只给整数分数.选择题和填
空题不给中间分.一、选择题:本题考查基础知识和基本运算,每小题5分,满分60分.(1)D(2)B(3)A(4)D(5)A(6)B(7)C(8)C(9)C(10)A(11)C(12)A二、填空题:本题考查基础知识和基本运算,每小题5分,满分20分.(13)8(14)823(15)218n(
16)2132x-y三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)【解析】(1)当1n时,1122aa得12a,„„„„„„1分又当2n时,nn-1122(2)22nnSanSa
,两式相减得122(2)nnnaaan,即12(2)nnaan,„„„„„„4分所以数列na是以2为首项,以2为公比的等比数列,所以2()nnanN.„„6分(2)2nnnbnan,„„„„„„7分1231n1222
32...(1)22nnTnn①,2341n2122232...(1)22nnTnn②,„„„„„„9分①-②得12311n222...222(1)2nnnTnn,„„„„„„
„„11分所以1n2(1)2nTn„„„„„„12分18.(本小题满分12分)【解析】(1)从报名的科技人员A、B、C、D、E中随机抽取3个人则所有的情况为:②,,ABC,,,ABD,,,ABE,,,ACD,,,ACE,,,ADE,,,B
CD,,,BCE,,,BDE,,,CDE共10种.„„„„„1分记“A、B同时被抽到”为事件Q,则事件Q包含基本事件,,ABC,,,ABD,,,ABE,基本事件共3种,„„„„„„„„„„„2分故
3()10PQ.„„„„„„„„„„3分(2)根据散点图判断,xycd适宜作为5G经济收入y关于月代码x的回归方程类型;„„„„4分xycd,两边同时取常用对数得:11xgygcd11gcgdx;设1,gyv11vgcgdx„„„„„„„„„5分1(1234567
)47x54.178.1071lg71717171iiiiyvv„„„„„„„„„„6分14076543212222222712iix„„„„„„„„„„7分7172221750.127
41.547lg0.2514074287iiiiixvxvdxx„„„„„„„„„„8分把样本中心点)54.1,4(代入11vgcgdx,得:1.54lg0.254cl
g0.54c0.540.25vx„„„„„„„„„„9分lg0.540.25yxy关于x的回归方程式:0.540.250.25103.4710xxy„„„„„„„10分(3)当8x时,0.540.250.258103.4710347xy„„„„
11分预测8月份的5G经济收入为347百万元。„„„„„„12分19.(本小题满分12分)【解析】(1)取EC中点M,连结,FMDM„„„„1分1////,2ADBCFMADBCMF,ADMF是平行四边形,„„„„„„2分//AFDM„„„„„„3分AF平面DEC
,DM平面DEC,//AF平面DEC.„„„„„„5分(2)222EAADEDADAE,„„„„„„6分又,ADABABAEAAD平面ABE,„„„„„„7分又//ADBC,所以CB平面ABE„„„„„„8分//ADBC,
AD平面BEC,BC平面BEC,//AD平面BEC,即A、D到平面BEC距离相等„„„„„„9分所以FDECDFECAFECCFEAVVVV111332233226AEFSBCEF„„„„„„11分解得12E
F,所以1121322EFFB„„„„„„12分20.(本小题满分12分)【解析】解法1:(1)由已知得22005134b,=c1,因此=a2„„„„2分于是椭圆E的方程为2=y+x212.„„„„„„„„3分(2)当l与y轴重合时,由题意知==PAPOPB
,„„„„„„4分当l与y轴不重合时,设l的方程为+1ykx,1221(,),(,)MyxyxN,则2100xx,,直线PA,PB的斜率之和为1221-2-2PAPBxkxyyk,M由11+1ykx,22+1ykx得121
21212122()=2PAPBxxxxkxxxkkxkxx,„„„„„„6分将+1ykx代入2212yx得22(2)+210kxkx,„„„„„„8分22244(2)880=k
+kk,所以,12222xxkk,21212xxk,则122212222222012kxxkkkkxkxk,„„„„„„10分从而0PAPBkk,故PA,
PB的倾斜角互补,所以OAPOBP,因此=PAPB.综上,=PAPB.„„„„„„12分解法2:(1)同解法1(2)当l与y轴重合时,由题意知==PAPOPB,„„„„„„4分当l与y轴不重合时,设l的
方程为+1ykx,1221(,),(,)MyxyxN,则2100xx,将+1ykx代入2212yx得22(2)+210kxkx.„„„„„„„„„6分22244(2)880=k+kk所以,12222xxkk,212
12xxk.„„„„„„„„7分设112:2yPAyxx,222:2yPByxx,34(,0),(,0)ABxx易知122,2yy在1122yyxx中,令0y得13122
xxy,在2222yyxx中,令0y得24222xxy,„„„„„„9分于是12122112341212222()+=-222(2)(2)xxxyxyxxxxyyyy,由11+1ykx,22+
1ykx得12211212123412122()2()+-2=-2(2)(2)(2)(2)xyxyxxkxxxxxxyyyy,由于121222122()=2k+=022kkxxxxkk,因此34+=
0xx,„„„„„11分所以点A与点B关于原点O对称,而点P在y轴上,因此=PAPB.综上,=PAPB.„„„„„„„„12分21.(本小题满分12分)【解析】(1)由2'42,22axaxxxxf(0
)x.„„„„„„1分由已知2424af.„„„„„„2分可得:8a,.„„„„„„3分又此时414ln24223lnf.„„„„„„4分所以所求的切线方程为:(34ln2)2(2)y
x.即:214ln20xy„„„„„„5分(2)2'42,22axaxxxxf其中1,e,x①当4a时,0fx在区间1,e恒成立,fx在区间1,e单调递增,„„6分又∵10f,∴函数fx在区间
1,e上有唯一的零点,符合题意.„„„„„7分②当24ea时,0fx在区间1,e恒成立,fx在区间1,e单调递减,„„8分又∵10f,∴函数fx在区间1,e上有唯一的零点,符合题意.„„9分③当24a4e时,(i)12ax时
,0,fxfx单调递减,又∵210,10()afff,∴函数fx在区间1,2a上有唯一的零点,„10分(ii)当e2ax时,0,fxfx单调递增,∴要使fx在区间1,e上有唯一的零点,只有当e0f
时符合题意,即2e102a,即22(e1)a„„11分∴222(e1)4ea时,函数fx在区间1,e上有唯一的零点;∴综上a的取值范围是4aa或22(e1)a.„„12
分请考生在第22、23二题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.(22)(本小题满分10分)【解析】(1)曲线C的极坐标方程化为2cos,xcos,222yx曲线
C的直角坐标方程为442xy.„„„„„„„„„3分直线1l的普通方程为tanxy.)2(„„„„„„„„„5分(2)射线OA的极坐标方程为,)2(,则||OAcos12,
射线OB的极坐标方程为2,)2(,则||OBsin12)2cos(12,„7分由||||OBOA得cos12sin12,2,解得:43„„„„„„
8分故OABS||||21OBOA2)221(4212812„„„„„„„„10分23.(本小题满分10分)【解析】(1)当1x时,原不等式化简为332x,即10x;„„„„„1分当21x时,原不等式化简为31,恒成立,即21x;„„„„„
2分当2x时,原不等式化简为332x,即32x.„„„„„„3分综上,原不等式的解集I}30|{xx.„„„„„„5分(2)当Icba,,时,,,,3,3,3abcabc均为正数,ba3111+cb3111+ac
31112)3(ba+2)3(cb+2)3(ac„„„„8分4)3(ba4)3(cb4)3(ac49„„„„10分