河北省保定市2020第一次模拟考试 数学试题(含答案)

DOC
  • 阅读 34 次
  • 下载 0 次
  • 页数 18 页
  • 大小 726.500 KB
  • 2022-11-29 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
河北省保定市2020第一次模拟考试 数学试题(含答案)
可在后台配置第一页与第二页中间广告代码
河北省保定市2020第一次模拟考试 数学试题(含答案)
可在后台配置第二页与第三页中间广告代码
河北省保定市2020第一次模拟考试 数学试题(含答案)
可在后台配置第三页与第四页中间广告代码
河北省保定市2020第一次模拟考试 数学试题(含答案)
河北省保定市2020第一次模拟考试 数学试题(含答案)
还剩5页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 18
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】河北省保定市2020第一次模拟考试 数学试题(含答案).doc,共(18)页,726.500 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-68056.html

以下为本文档部分文字说明:

数学理科答案一、选择题C.B.C.D.D.C.A.C.B.D.A.A.二、填空题13.1;14.6;15.56;16.102.三、解答题17.(12分)解:(1)证明:因为,,abc成等比数列,所以2bac„„

„„„„„„1分而2222211cos(1)2222acbacacacBacacca(当且仅当ac时取等号)又因为B为三角形的内角,所以B60„„„„„„„„4分(2)在ABC中,因为21cos212sin3AA,所以6s

in3A.„„„„„„6分又因为3,c1sin3C,所以由正弦定理sinsinacAC,解得32a„„„„„„„„8分法1:由6sin,032AA得3cos3A.由余弦定理2222cosabcbcA,得22150bb.解得5b或3b(舍)„

„„„„„„„„„„„„„„10分所以AB边上的高656sin533hbA.„„„„„„„12分法2:由6sin,032AA得3cos3A.„„„„„„„„6分又因为1sin3C,所以22cos3C„„„„„

„„„7分所以6223153sinsin()sincoscossin33339BACACAC„9分或6223133sinsin()sincoscossin33339BACACAC(舍)【或:因为323ac,且02A

,所以C为锐角,„„„„„„„6分又因为1sin3C所以22cos3C„„„„„„„„7分6223153sinsin()sincoscossin33339BACACAC„10分】所以AB边上的高535

6sin3293haB.„„„„„„„12分法3:等面积法也可。(酌情给分)18.(12分)解:(1)因为AD∥BC,所以AD∥平面BCF因为EA∥FC,所以EA∥平面BCF„„„„„„„„2分所以平面ADE∥平面BCF故ED∥平面BCF„„„„„„„„„

„„„„„„4分(2)以D为原点,建立空间直角坐标系,如图.因为∠BAE=∠DAE=90°,所以EA⊥平面ABCD,又因为EA∥FC,所以FC⊥平面ABCD设AB=a,BC=b,则D(0,0,0),F(0,a,b

),E(b,0,a),B(b,a,0)„„„„„„„„6分则DE(b,0,a),DF(0,a,b)设平面DEF的法向量为(,,)nxyz则由00,0,0,DEnbxazaybzDFnuuurruuurr,取x=1,因为BCbABa,则2

(1,,)n„„8分设平面BEF的法向量为(,,)mxyzBEuuurQ(0,-a,a)BFuuur,(-b,0,b)则由00,0,0BEmayazxyzbxbzBFmuuur

uruuurur,,,取(1,1,1)mur,„„„„„„9分因为二面角B-EF-D的余弦值为33,所以242133||||31mnmnurrurr,即210,由于30,所以不存在正

实数,使得二面角B-EF-D的余弦值为33„„„„„„„„12分ABDCEFxyz19.(12分)解(1)e,i,t,a四个字母出现的频率分别为53420.17,0.10,0.14,0.69,29292929其大小关系为:e出现的

频率t出现的频率i出现的频率a出现的频率„„„„4分(2)X分布列为:„„„„„„6分其数学期望为242129()234599999EX„„„„„„„„8分(3)满足字母个数之和为6的

情况分为两种情况:①从含两个字母的两个单词中取一个,再从含4个字母的两个单词中取一个,其取法个数为11224CC„„„„„„„„„„„„„„„„10分②从含3个字母的4个单词中取两个,其取法个数为246C故所求的概率为112224294653618

CCCpC„„„„„„„„12分20.(12分)解:(1)依题意得22222131222abcaabc所以22acb所以椭圆的方程为22142xy„„„„„„„„„„„„2分设M(x0,y0)到点D的距离为d,则222200

001(1)232dxyxx因为二次函数的对称轴为直线x=2所以,该函数在[2,2]上单调递减,所以当0022xx时取得最小值,时取得最大值所以M到点D的最短与最长距离分别为1,3„„„„„„„„„„„„5分(2)假设存在点(2,)Pm,使

得ABP的内切圆恰好为221xy设1122(,),(,)AxyBxy因为直线AB与圆221xy相切,X2345P29492919||12n2n„„„„„„„„„„„„6分2n当时,AB:2yx联立得222142yxxy2342

0xx,12420,3xx422(0,2),(,)33AB„„„„„„„„„„„„7分法1:因为AO为BAP的角平分线,所以1APABkk——————————————————9分所以21,00

2APmkm(2,0)P即所以直线BP的方程为为720xy因为圆心到直线BP的距离为22|2|11517所以此时BP不是圆的切线————11分2n同理,当时,BP也不是圆的切线综上所述:P不存在.————12分22(02),(2,),2A

PmAPmkQ法:,所以,直线AP的方程为(2)220mxy由原定O到直线AP的距离为1得2212(2)m解得m=0或22„„„„„„„„„„„„8分当m=0时,P(2,0),此时直线BP的效率为17BPk所以直线BP的

方程为720xy因为圆心到直线BP的距离为22|2|11517所以此时BP不是圆的切线„„„„„„„„„„„„10分22m当时,P(2,22),此时直线BP的效率为1BPk所以直线BP的方程为+20xy,与直线AB重合,故舍

去„„„„„„„11分2n同理,当时,BP也不是圆的切线综上所述:P不存在.„„„„„„„„„„„„12分21.(12分)解:(1)由'()-2(2)0xFxmex,所以x=-2,„„„„„„„„1分因为0m,所以在(-∞,-2

)上,F(x)递增;在(-2,+∞)递减所以函数F(x)只有最大值,其最大值为2(2)2eFm,无最小值„„„„„3分(2)2()32e(1),xfxxxmxQ所以ln1()xaxfa,即22e(1)31lnamaaaxax„„„„„„4分由

于[1,0),lnaxax时函数为减函数,因为对任意的[1,)x,[1,0)a,不等式ln1()xaxfa恒成立,故只需2max2e(1)31lnamaaaxaxa()

即原式等价于对任意的[1,0)a,22e(1)410amaaa恒成立„„„„6分法1:记2()2e(1)41ahamaaa,则()2e(2)242(2)(e1)aahamaaam.1[1,0),e[,1),eaaQ且21a

.①当1(0)mm时,e10,()0amha,即[1,0)a时,()ha单调递减.∴()0ha,只需(0)0h,解得12m,∴1[,0)(0,1]2m.„„„„„„8分②当1m时,令()0ha得lnam,或

2a(舍去)(ⅰ)当1em时,ln1,0)m(,当(1,ln)am时,'()0ha;当(ln,0)am时,'()0ha,∴2min()(ln)ln2ln30hahmmm解得31(,e)em,∴(1,e)m.„„„„„„„„10分(ⅱ)当em时,则l

n1am,又因为[1,0)a【或:因为[1,0)a,所以1e1ea,所以e1am】,所以'()0ha,则()ha在[1,0)a上单调递增,∴min()ha(1)40h,综上,m的取值范围是1[,0)(0,)2.„„

„„„„12分法2:当a=-1时,显然m≠0时恒成立„„„„„„„„„„„7分1,0)a当(时,2412e(1)aaama原式等价于„„„„„„9分令241(),e(1)aaahaa2222222(24)(1)(41)(2)()e(1)(2

)[2(1)(41)]e(1)(2)(23)](2)(3)(1)]e(1)e1(1)1aaaaaaaaahaaaaaaaaaaaaaaa分1,0)()0()1,0)ahah

a又因为(,所以在(上单调递增2(0)112mhm综上,m的取值范围是1[,0)(0,)2.„„„„„„12分22.(10分)解:(1)法1:设P(x,y),则由条件知M(,22x

y).由于M点在C1上,所以2cos222sin2xy„„„„„„„„2分从而2C的参数方程为4cos44sinxy(为参数)消去参数得到所求的直角坐标方程为22(4)16xy„„„„„„„„4分法2:由2cos

22sinxy得,2cos,22sinxy即C1的直角坐标方程为:22(2)4xy„„„„„„„„2分设P(x,y),则由条件知M(,22xy).由于M点在C1上,所以M的坐标适合上述方程即22()(2)422xy,化

简得所求的直角坐标方程为22(4)16xy„„„„4分(2)因为222,sinxyy,代入上式得1C的直角坐标方程得,其极坐标方程为4sin,„„„„„„„„6分同理可得曲线2C的极坐标方程为8sin„„„„„„„„7分设Q(,),A(1,),B(2,

),则AB的中点Q的轨迹方程为116sin2即AB的中点Q的轨迹极坐标方程为6sin„„„„„„„„10分23.(10分)解:(1)因为=1abc,所以|1||1|2||||||)(xxcxbxaxxf„„„

„„„„„1分法1:由上可得:31,1,()3,11,31,1.xxfxxxxx„„„„„„„„3分所以,当x=-1时,函数)(xf的最小值为2„„„„„„„„4分()|||||||1||1|+|1

||1||11|2|12:|2fxxaxbxcxxxxxxx法„„„„„2分当且仅当(1)(1)010xxx,即x=-1时取得最小值2„„„„„

„„4分(2)证明:因为a,b,c为正数,所以要证333bccaababc即证明2221bcaabc就行了„„„„„„„„6分法1:因为222bcaabcabc222bcaabcabc2222222()()bcaabca

bc当且仅当时取等号„8分又因为(0)1f即1abc且a,b,c不全相等,所以2221bcaabc即333bccaababc………………10分法2:因为(abc)(22222)()()bcabcaabcabcabcabcabcbca

当且仅当时取等号„„„„„„„„8分又因为(0)1f即1abc且a,b,c不全相等,所以2221bcaabc即333bccaababc………………10分文科数学答案一、选择题C.B.C.D.D.C.A.C.B.D.A.A.二、填空题13.1;14.15;15.56;1

6.6.三、解答题17.(12分)解:(1)证明:因为,,abc成等比数列,所以2bac„„„„„„„„1分而2222211cos(1)2222acbacacacBacacca(当且仅当

ac时取等号)又因为B为三角形的内角,所以B60„„„„„„„„4分(2)在ABC中,因为21cos212sin3AA,所以6sin3A.„„„„„„6分又因为3,c1sin3C,所以由正弦定理sinsinacAC,解得32a„„„„„„„„8分法1:由6sin,03

2AA得3cos3A.由余弦定理2222cosabcbcA,得22150bb.解得5b或3b(舍)„„„„„„„„„„„„„„„10分所以AB边上的高656sin533hbA.„„„„„„„12分法2:由6sin,032AA

得3cos3A.„„„„„„„„6分又因为1sin3C,所以22cos3C„„„„„„„„7分所以6223153sinsin()sincoscossin33339BACACAC„9

分或6223133sinsin()sincoscossin33339BACACAC(舍)【或:因为323ac,且02A,所以C为锐角,„„„„„„„6分又因为1sin3C所以22cos3C„„„„„„„„7分62231

53sinsin()sincoscossin33339BACACAC„10分】所以AB边上的高5356sin3293haB.„„„„„„„12分法3:等面积法也可。(酌情给分)18.(12分)解:(1)因为AD∥BC,所以AD∥平面BCF因

为EA∥FC,所以EA∥平面BCF„„„„„„„„2分所以平面ADE∥平面BCF故ED∥平面BCF„„„„„„„„„„„„„„„4分(2)设AB=a,BC=b,则b=a在矩形ABCD和△BCF中,易得2221,2

BDDFabaBFb„„„6分所以在△BDF中,BF边上的高222222111()1222hDFBFabba又21122ABDSaba„„„„„„„„9分所以,由等体积法得2222111313212222323abbabab

即223,1所以存在正实数1,使得三棱锥A-BDF的高恰好等于33BC.„„„„„„„„12分19.(12分)解(1)e,i,t,a四个字母出现的频率分别为53420.17,0.10,0.14,0.69,29292929其大小关系为:e出现的频率

t出现的频率i出现的频率a出现的频率„„„„4分(2)一共有9个单词,其中所含字母个数为3的单词有4个,ABDCEF故所求的概率为49„„„„„„„„„„„„„„„„7分(3)满足字母个数之和为6的情况分为两种情况:从“and”前面的三个单词

和后面的五个单词中,各随机任取一个单词,总共的情况有以下15种:(seize,live),(seize,it),(seize,to),(seize,the),(seize,full)(the,live),(the,it),(the,to),(the,the),(the,full)

(day,live),(day,it),(day,to),(day,the),(day,full)„„„„10分其中符合条件的情况有以下4种:(the,it),(the,to),(day,it),(d

ay,to),故所求概率为415p„„„„„„„„„„„„„„„„12分20.(12分)(1)解:因为24yx,所以抛物线焦点坐标为(1,0)F„„„„„„„„1分∵直线l的斜率不为0,所以设:1lxmy,由214xmyyx

得2440ymy,„„„„„„„„2分所以124yym21212()242xxmyym∴212||2445ABxxm=8,∴214m1„„„„„„„„4分∴直线l的方程

为1010xyxy或.„„„„„„„„5分(2)证明:因为|MF|=2,所以由抛物线的定义可得,点M的横坐标为1故M(1,2)或M(1,-2),由(1)知D(21m,)„„„„„„„6分①M(1,2)时,则1112412MAykxy,

2222412MBykxy,2212MDmmkm„„„„„„„„„„„„„„„„7分因为2MDMAMBkkk=12121212121244444422(2)(2)2()4yyyyyyyyyyyy由(1)知124yym,124yy

,代入上式得2MDMAMBkkk=22mm显然2MDMAMBkkk„„„„„„„„„„„„„„„„10分②若M(1,-2)时,仿上(或由对称性)可得2MDMAMBkkk综上可得,对任意的直线l,直线MA,MD,MB的斜率始终依次成等差数列.„„„„„„„„„„„„

„„„„„„„„„„„„12分21.(12分)解:(1)设,ooPxy在函数2()xmmFxxxx的图象上,则222222200000200||()222(21)mmPOxyxxxmmxx„„„„3分即2(21)21m,所以12m„„„„„„„„

4分(2)证明:易得21fxxaInx,(10)xx且所以2222(1)11axxafxxxxx10)xx且„„„„„„„„5分令2()22gxxxa,因为其对称轴为直线12x

由题意知12xx、是方程()0gx的两个均大于1且不为0的不相等的实根,所以由480(1)0aga,得102a„„„„„„„„8分【法二:因为x1>-1,x2>-1,∴x1+1>0,x2+1>0所以(x1+1)

(x2+1)>0,即x1x2+(x1+x2)+1>0,即a>0,又△>0,所以102a】„„„„8分因为21(0)0,02gax又x2为方程()0gx的根,所以222(2)axx+

222222222221(2)1fxxalnxxxxlnx+2„„„„„„„9分21()=2(1)ln(1),(0)2hxxxxxx设则22(21)122(21)1hxxx

lnxxxlnx因为1(,0)2x时,0,()hxhx在1[,0)2上单调递增;1112ln2(,0),()224xhxh当时且()(0)0hxh故21ln2()042fx„„„„„„„„12分22.(10分)解:

(1)法1:设P(x,y),则由条件知M(,22xy).由于M点在C1上,所以2cos222sin2xy„„„„„„„„2分从而2C的参数方程为4cos44sinxy(为参数)消去参数得到所求的直角坐标方程为22(4)16xy„„„„„„„„4分法

2:由2cos22sinxy得,2cos,22sinxy即C1的直角坐标方程为:22(2)4xy„„„„„„„„2分设P(x,y),则由条件知M(,22xy).由于M点在C1上,

所以M的坐标适合上述方程即22()(2)422xy,化简得所求的直角坐标方程为22(4)16xy„„„„4分(2)因为222,sinxyy,代入上式得1C的直角坐标方程得,其极坐标方程为4sin

,„„„„„„„„6分同理可得曲线2C的极坐标方程为8sin„„„„„„„„7分设Q(,),A(1,),B(2,),则AB的中点Q的轨迹方程为116sin2即AB的中点Q的轨迹极坐标方程为6sin„„„„„„„„10分23.

(10分)解:(1)因为=1abc,所以|1||1|2||||||)(xxcxbxaxxf„„„„„„„„1分法1:由上可得:31,1,()3,11,31,1.xxfxxxxx„„„„„„„„3分所以,当x=-1时,函

数)(xf的最小值为2„„„„„„„„4分()|||||||1||1|+|1||1||11|2|12:|2fxxaxbxcxxxxxxx法„„„„„2分当且仅当(1)(1)010xxx,

即x=-1时取得最小值2„„„„„„„4分(2)证明:因为a,b,c为正数,所以要证333bccaababc即证明2221bcaabc就行了„„„„„„„„6分法1:因为222bcaabcabc222bcaabcabc22

22222()()bcaabcabc当且仅当时取等号„8分又因为(0)1f即1abc且a,b,c不全相等,所以2221bcaabc即333bccaababc………………10分法2:因为(abc)(2222

2)()()bcabcaabcabcabcabcabcbca当且仅当时取等号„„„„„„„„8分又因为(0)1f即1abc且a,b,c不全相等,所以2221bcaabc即333bcc

aababc………………10分

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 111
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?