【文档说明】广东省茂名市2020届高三第二次综合测试 数学(理)(含答案).doc,共(18)页,458.000 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-67920.html
以下为本文档部分文字说明:
绝密★启用前试卷类型:A2020年茂名市高三级第二次综合测试数学试卷(理科)2020.5本试卷分选择题和非选择题两部分,共5页,23小题,满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试题
卷和答题卡上.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷草稿纸和答题卡上的非答题区域均无效.
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将答题卡上交.第一部分选择题(共60分)1.若()2,,xiiyixyR,则复数yi
x的虚部为()A.2B.1C.iD.-12.已知集合UR,2lg(4)Axyx,21xxB,则AB()A.(2,2)B.(2,1)C.[2,2]D.[2,2)3.已知π1sin62,且π0,
2则πcos3()A.0B.12C.1D.324.下列命题错误的是()A.“x=2”是“x2−4x+4=0”的充要条件B.命题“若14m,则方程x2+x−m=0有实根”的逆命题为真命题C.
在△ABC中,若“A>B”,则“sinA>sinB”D.命题p:“x0∈R,x02−2x0+4>0”,则﹁p:“x∈R,x2−2x+4<0”5.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中国古代流传下来的两幅神秘图案,蕴
含了深奥的宇宙星象之理,被誉为“宇宙魔方”,是中华文化阴阳术数之源。河图的排列结构如图所示,一与六共宗居下,二与七为朋居上,三与八为友居左,四与九同道居右,五与十相守居中,其中白圈为阳数,黑点为阴数,若从阳数和阴数中各取一数,则其差的绝对值为5的概率为()A.51
B.256C.257D.2586.“辗转相除法”是欧几里得《原本》中记录的一个算法,是由欧几里得在公元前300年左右首先提出的,因而又叫欧几里得算法.如图所示一个当型循环结构的“辗转相除法”程序框图.当输入m=1995,n=228,输出的m是()A.3B.19C.57D.1147.如图,某沙
漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的21(细管长度忽略不计).当细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,则此沙堆的侧面积为()A.45B.85C
.317D.4178.设偶函数()fx满足1()()2(0)2xfxx,则使不等式914fx成立的x取值范围是()A.(,1)(3,)B.(1,3)C.(0,2)D.(,0)(2,)9.圆M:224xmy与双曲线C:22221xy
ab(0a,0b)的两条渐近线相切于A、B两点,若32AB,则C的离心率为()A.332B.3C.2D.310.某贫困县为了实施精准扶贫计划,使困难群众脱贫致富,对贫困户实行购买饲料优惠政策如下:否结束输出m是r>0?r=1开始输入m,n求m除以n的余数rm=nn=r(1)
若购买饲料不超过2000元,则不给予优惠;(2)若购买饲料超过2000元但不超过5000元,则按标价给予9折优惠;(3)若购买饲料超过5000元,其5000元内的给予9折优惠,超过5000元的部分给予7折优惠.某贫穷户购买一批饲料,有如下两种方案:方案一:分两次付款购买,分别为2880元和
4850元;方案二:一次性付款购买.若取用方案二购买此批饲料,则比方案一节省()元A.540B.620C.640D.80011.已知六棱锥PABCDEF的底面是正六边形,PA平面ABC,2PAAB.则下列命题中正确的有().①平面PAB⊥平面PAE;②PB⊥AD;③直线CD与PF
所成角的余弦值为55;④直线PD与平面ABC所成的角为45°;⑤CD∥平面PAE.A.①④B.①③④C.②③⑤D.①②④⑤12.若关于x的方程1123042xxmmm在
,1上有唯一实数解,则实数m的取值范围()43]320.A或,(]320.B,(41]920.C或,(]920.D,(第Ⅱ部分非选择题(共90分)二.填空题:本大题共4小题,每小题5分,共20分.13.已知向量42(,)a,11(,)b,若b(
akb),则k.14.62()xx的展开式中,常数项是.15.已知曲线21ln(1)2fxxx在点1,1f处的切线的倾斜角为,则22sinsincos.16.在ABC中,角A,B,C所
对应的边分别为a,b,c,且6cos(2cos),6AaCc,则ABC的a,b的等量关系式为,其面积的最大值为.(本题第一空2分,第二空3分)三.解答(本大题共5小题,每题12分共60分.解答应写出文字说明,证明过程或演算步骤.)17.设*nN,数列na的前n项和为nS,
已知nnnass221,且211a,正项的等差数列nb的首项为2,且321,1,bbb成等比数列.(1)求na和nb的通项公式;(2)求证:1227nbbbaaa.18.如图,已知ABC内接于
圆O,AB是圆O的直径,四边形DBCE为平行四边形,F是CD的中点,(1)证明://OF平面ADE;(2)若四边形DBCE为矩形,且四边形DBCE所在的平面与圆O所在的平面互相垂直,22ACAB,AE与圆O所在的平面的线面角为600.求二面角D-AE-B的平面角的余弦
值.19.已知椭圆)0(1:2222babyaxC右焦点与抛物线xy342的焦点重合,以原点为圆心、椭圆短半轴长为半径的圆与直线1l:2xy相切.(1)求椭圆的方程(2)若直线2l:02ybx与y
轴交点为P,A、B是椭圆上两个动点,它们在y轴两侧,PBPA,APB的平分线与y轴重合,则直线AB是否过定点,若过定点,求这个定点坐标,若不过定点说明理由.20.2020年初全球爆发了新冠肺炎疫情,为了防控疫情,某医疗科研团队攻坚克难研发出一种
新型防疫产品,该产品的成本由原料成本及非原料成本组成,每件产品的非原料成本y(元)与生产该产品的数量x(千件)有关,根据已经生产的统计数据,绘制了如下的散点图.观察散点图,两个变量不具有线性相关关系,现考虑用函数byax对两个变量的关系进行拟合。参考数据
(其中1iiux):u2u621uii61iiy621iiy61iiiuy0.48345252.440.410.16811.49230620858.44173.850.39(1)求y关于x的回归方程,并求y关于u的相关系数(精确到0.01).(
2)该产品采取订单生产模式(根据订单数量进行生产,即产品全部售出).根据市场调研数据,若该产品单价定为80元,则签订9千件订单的概率为0.7,签订10千件订单的概率为0.3;若单价定为70元,则签订10千件订单的概率为0.3,签订11千件订单的概率为0.7.已知每件产品的原料成本为30元
,根据(1)的结果,要想获得更高利润,产品单价应选择80元还是70元,请说明理由.参考公式:对于一组数据11,u,22,u,…,,nnu,其回归直线u的斜率和截距的最小二乘估计分别为:1221ˆniiiniiunuunu,ˆˆ
u,相关系数1222211niiinniiiiunurunun.21.已知函数ln1afxxx,aR.(1)若ea1,求证:)(xf有且只有两个零点(2
)axaxxxafxg222)()(有两个极值点1x,212()xxx,且不等式21)(mxxg恒成立,试求实数m的取值范围.(二)选考部分:共10分请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分,做答时,请用2B铅笔在答题
卡上把所选题目对应的题号涂黑.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy中,已知曲线C:2cos,3sin,xy(为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程cos()4
a,点M(2,4).在直线l上,直线l与曲线C交于A,B两点.(1)求曲线C的普通方程及直线l的参数方程;(2)求△OAB的面积.23.(本小题满分10分)选修4-5:不等式选讲已知函数f(x)
=|x+1|−|x−2|.(1)若f(x)≤1,求x的取值范围;(2)若f(x)最大值为M,且a+b+c=M,求证:a2+b2+c2≥3.2020年茂名市高三级第二次综合测试数学试题参考答案和评分标准(理科数学
)一、选择题:本大题共12小题,每小题5分,共60分.123456789101112BDCDACDAACBA二.填空题:本大题共4小题,每小题5分,共20分.13.【答案】314.【答案】6015.【答案】2413
16.【答案】b=2a;12三.解答(本大题共5小题,每题12分共60分.解答应写出文字说明,证明过程或演算步骤.)17.解:(1)由nnnass221得,nnnnaass1122-2„„„„„„„„„„„„
„„„„1分即211nnaa„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„2分na是以首项21,公比为21的等比数列„„„„„„„„„„„„„„„„„„„„„„„„3分nna)(21„„„„„„„„„„„„„„„„„„„„„„
„„„„„„„4分设等差数列nb的公差为d,由21b,且321,1,bbb成等比数列.)22(2)1(2dd即03-2-2dd„„„„„„„„„„„„„„„„„„„„„„„„5分0d3d„„„„„„„„„„
„„„„„„„„„„„„„„„„„„„„„„6分13nbn„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„7分(2)由(1)得1313)21(nnbaan„„„„„„„„„„„„„„„„„„„„„„„„„8分nbbbaaa
21=1352naaa„„„„„„„„„„„„„„„„„„„„„„„„9分=1352)21()21()21(n„„„„„„„„„„„„„„„„„„„10分=33132)21(-1)21()21(-)21(n„„„„„„„„„„„„„„„„„„„„„„11分=31211
2-()7727n„„„„„„„„„„„„„„„„„„„„„„12分18.证明:(1)连结BE,DBCE平行四边形且F为CD中点F为BE中点„„„„„„„„„„„„„„„„„„„„„„„„1分又O为AB的中点//OFAE„„„„„„„„„„„„„„„2分AE平面ADE,OF平
面ADE„„„„„„„„„„„„„„3分//OF平面ADE„„„„„„„„„„„„„„„„„„„„„4分(2)矩形DBCE平面ABC,平面DBCE平面ABC=BC,ECBC,EC平面DBCE
EC平面ABC„„„„„„„„„„„5分又AB为圆O的直径ACBC以C点为原点建立如图所示的空间直角坐标系22ACABBC=3,AC=1由EC平面ABC得,∠EAC就是AE与平面ABC所成的角由tan600=ACCE得,
CE=3„„„„„„„„„„„„„6分A(1,0,0),E(0,0,3),D(0,3,3),B(0,3,0)„„„„„„„„„7分AE=(-1,0,3),AD=(-1,3,3),AB=(-1,3,0)„„„„„„„„„„„
8分设平面AED的一个法向量),,(m111zyx,由,,ADmAEm得,,0ADm0AEm即1111130330xzxyz,所以)1,0,3(m„„„„„„9
分同理可得,平面AEB的一个法向量)1,1,3(n„„„„„„„„„„„„„„„„„„„10分5522513nmnmn,mcos„„„„„„„„„„„„„„„„„„„11分二面角D-AE-B二面角D-AE-B的平面角的余弦值为55
2„„„„„„„„„„„„„„12分19.解:(1)抛物线xy342的焦点为)0,3(,所以c=3„„„„„„„„„„„„„„„1分∵直线:02yx与圆222byx相切,∴bd1112„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„2分∴42
22cba„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„3分∵椭圆C的方程是2214xy„„„„„„„„„„„„„„„„„„„„„„„„4分(2)b=1,直线:2l02yx与y轴交点P(0,2),„„
„„„„„„„„„„„„„„„„5分设椭圆上A、B两个动点的坐标为:1122(,)(,)AxyBxy、.AB方程为:,mkxy由0448)41(4)(4142222222mkmxxkmkxxyxmk
xy,4144,4182221221kmxxkmkxx得:„„„„„„„„„„„„„„„„„„„„„„„„6分2111112,222xmkKxmkxmkxxyKPBPA同理得:„
„„„„„„„„„„8分又APB的平分线在y轴上0441684428222222121mmkkmmmkkxxxxmkKKPBPA)())((.........10分,0,kPBPAm=21,„„„„„„„„„„„„„„
„„„„„„„„„„„„„„„11分直线21:kxyAB恒过定点)21,0(„„„„„„„„„„„„„„„„„„„„„„„12分20.【解析】(1)令1ux,则byax可转化为yabu,因为306516y,„„„„„„„„„„„
„„„„„„„„„„„„„„„„„„„„1分所以6162216173.860.41511001.492648.34ˆ0.4830.168416iiiiiuyuybuu,„„
„„„„„„„„„„„„2分则51ˆˆ1000.4110aybu,„„„„„„„„„„„„„„„„„„„„„„„„3分所以10100ˆyu,因此y关于x的回归方程为10010ˆyx;„„„„„„„„„„„„„4分y与
u的相关系数为:6126622221148.3448.3460.960.48345252.4450396.6iiiiiiiuyuyruuyy,„„„„„„6分
(2)法一:(i)若产品单价为80元,记企业利润为X(元),订单为9千件时,每件产品的成本为10010010304099元,企业的利润为100804090002600009[()](元),„„„„„„„„„„„„„„„„„„„7分订单为10千件时,每件产
品的成本为10100103050元,企业的利润为805010000300000()(元),„„„„„„„„„„„„„„„„„„„„„„8分企业利润X(元)的分布列为X260000300000P0.70.3所以2600000.73000000.3272000EX
(元);„„„„„„„„„„„„„„„9分(ii)若产品单价为70元,记企业利润为Y(元),订单为10千件时,每件产品的成本为10100103050元,企业的利润为705010000200000()(元),订单为11千件时,每件产品的成本为10010010
30401111元,企业的利润为10070401100023000011[()](元),„„„„„„„„„„„„„„„„„10分企业利润Y(元)的分布列为Y200000230000P0.30.7所以2000000.32300000.7221000EY(元
),„„„„„„„„„„„„„„„„11分>EXEY又故企业要想获得更高利润,产品单价应选择80元.„„„„„„„„„„„„„12分法二:(i)若产品单价为80元,记企业的产量为X(千件),其分布列为X910P0.70.3所以90.7100.39.3EX
„„„„„„„„„„„„„„„„„„„„„„„„„„„8分企业的利润为:1008040930027200093[()].„„„„„„„„„„„„„„„„„„„9分(ii)若产品单价为70元,记企业的产量为Y(千件),其分布列
为X1011P0.30.7所以100.3110.710.7EY„„„„„„„„„„„„„„„„„„„„„„„„„10分企业的利润为:100704010700221000107[()].„„„„„
„„„„„„„„„„„„„„11分272000>221000又故企业要想获得更高利润,产品单价应选择80元.„„„„„„„„12分21.解:(1)1ln)(xaxxf定义域为),0(,2/12)(xa
xxaxxf,又ea1„„„„„„„„„„„„„„„„„„„„„„1分所以()fx在)1,0(e是减函数,在),1(e是增函数„„„„„„„„„„„„„„„„2分又01111ln)1(eef,0411l
n)1(2233eeeef所以()fx在)1,1(3ee有唯一零点,且在)1,0(e也有且只有唯一零点,„„„„„„„„„„3分同理01111ln)1(eef,01112eeeeefln)(所以()fx在),(ee1有唯一零
点,且在),1(e也有且只有唯一零点„„„„„„„„„„4分所以)(xf有且只有两个零点„„„„„„„„„„„„„„„„„„„„„„„„„„„„5分(2)xxxaxg2ln)(2定义域为),0(
,)(xg有两个极值点1x,212xxx,即02222)(2/xxxaxxaxg,0222axx有两不等实根)0(,2121xxxx„„6分1002a,且212111,22xxaxx,„„„„„„„
„„„„„„„„„„„„„„„„„„7分从而121012xx,„„„„„„„„„„„„„„„„„„„„„„„„„„„„8分由不等式21)(mxxg恒成立,得11211121211212112222xxxxxxxxaxxxxgmln)(
ln)(1111112ln1xxxx恒成立„„„„„„„„„„„„„„„„„„„10分令11()12ln012htttttt,当102t时21()12ln0(1)httt恒成立,所以函
数ht在10,2上单调递减,13()ln222hth,„„„„„„„„„„„„„„„„„„„„„„„„„11分故实数m的取值范围是)2ln23,(„„„„„„„„„„„„„„„„„„„„„„12
分(二)选考部分:22.解:(Ⅰ)将曲线C:2cos,3sin,xy消去参数得,曲线C的普通方程为:22143yx.„„„„„1分∵点M(2,4)在直线cos()4a上,∴a=2co
s()44=2.„„„„„„„„„„2分∴cos()24,展开得22(cos+sin)=2,又x=cos,y=sin,∴直线l的直角坐标方程为x+y−2=0,„„„„„„„„„„„„„„„„„„„„„„„„„4分显然l过
点(1,1),倾斜角为34.∴直线l的参数方程为21,221,2xtyt(t为参数).„„„„„„„„„„„„„„„„„„„„„5分(Ⅱ)法一:由(Ⅰ),将直线l的参数方程代入曲线C的普通方程得:222211(1)(1)14232tt,„„„„„„
„„„„„„„„„„„„„„„„„„„6分整理得2722100tt,显然△>0设A,B对应的参数为t1,t2,则由韦达定理得12227tt,12107tt.„„„„„„„„„7分由参数t的几何意义得|AB|=|t1−
t2|=21212()4tttt=22212210()4777,„„„„8分又原点O到直线l的距离为d=|002|22.„„„„„„„„„„„„„„„„„„„9分因此,△OAB的面积为S=1221112||22277ABd.„„
„„„„„„„„„„„„„„10分法二:由(Ⅰ)可知,直线l的直角坐标方程为x+y−2=0,联立2220143xyxy,整理得271640xx,显然△>0„„„„„„„„„„„„„„„„6分设A,B对应的坐标为11
22(,),(,)xyxyt1则由韦达定理得12167xx,1247xx.„„„„„„„7分所以2221212122164||(1)[()4]2[()4777ABkxxxx„„„„„„„„„„„„8分又原点O到直线
l的距离为d=|002|22.„„„„„„„„„v„„„„„„„„„„9分因此,△OAB的面积为S=1221112||22277ABd.„„„„„„„„„„„„„„„„10分法三:由(Ⅰ)可知,直线l的直
角坐标方程为x+y−2=0,联立2220143xyxy,整理得271640xx,显然△>0„„„„„„„„„„„„„„„„6分设A,B对应的坐标为1122(,),(,)xyxy则由
韦达定理得12167xx,1247xx.„„„„„„„7分因为直线l过椭圆右顶点(2,0),所以71622x,722x„„„„„„„8分把722x代入直线l的方程得7122y„„„„„„„9分因此
,△OAB的面积为S=712712221.„„„„„„„„„„„„„„„„„„„„„10分23.解:(Ⅰ)由已知3,2,21,12,(,1.)3xxfxxx<<„„„„„„„„„„„„„„„„„„„„„„1分当x≥2时,f(
x)=3,不符合;„„„„„„„„„„„„„„„„„„„„„„„„„„„„2分当−1≤x<2时,f(x)=2x−1,由f(x)≤1,即2x−1≤1,解得x≤1;„„„„„„„„„„„„„3分当x<−1时,f(x)=−3,f(x)≤1恒成立.„„„„„„„„„„„„„„„„„„„„
„„„„4分综上,x的取值范围是(,1].„„„„„„„„„„„„„„„„„„„„„„„„„„„„5分(Ⅱ)()|1||2||12|3fxxxxx,由(Ⅰ)知当且仅当x≥2时,f
(x)=3,„„„„„„„„„„„„„„„„„„„„„„„„„6分所以M=f(x)Max=3.即a+b+c=3,„„„„„„„„„„„„„„„„„„„„„„„„„„„„7分因为a2+b2≥2ab,a2+c2≥2ac,c2+b2≥2cb,„„„„„„„„„„„„
„„„„„„„„„„8分所以2(a2+b2+c2)≥2(ab+ac+cb)所以3(a2+b2+c2)≥a2+b2+c2+2ab+2ac+2cb=(a+b+c)2=9„„„„„„„„„„„„„„„„9分因此(a2+b2+c2)≥3„„„„„„„„„„„„„„„„„„„„„„„„„„„
„„„„10分欢迎访问“高中试卷网”——http://sj.fjjy.org