【文档说明】广东省汕头市澄海区2018年4月中考数学模拟试卷 含答案.doc,共(20)页,434.500 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-63185.html
以下为本文档部分文字说明:
2018年广东省汕头市澄海区中考数学模拟试卷(4月份)一.选择题(共10小题,满分24分)1.2018的相反数是()A.8102B.﹣2018C.D.20182.《2018年国务院政府工作报告》指出“我国五年来,粮食生产能力达到12000亿斤”,将
12000亿斤用科学记数法表示应为()A.1.2×103亿斤B.12×103亿斤C.1.2×104亿斤D.0.12×105亿斤3.(3分)下列运算结果正确的是()A.x2+2x2=3x4B.(﹣2x2)3=8x6C.x2•(﹣x3)=﹣x5D.2x2÷x2=x4.(3分)如
图,AO平分∠BAC,AO⊥BC,DE⊥BC,GH⊥BC,垂足分别为O、E、H,且DO∥AC,∠B=43°,则图中角的度数为47°的角的个数是()A.5B.6C.7D.85.(3分)下列四个立体图形中,俯视图为中心对称图形的有()A.1个B.
2个C.3个D.4个6.(3分)已知关于x的不等式组只有唯一的整数解,则a的值可以是()A.﹣1B.C.1D.27.(3分)在一次中学生田径运动会上,男子跳高项目的成绩统计如下:成绩(m)1.501.551.601.
651.70人数28641表中表示成绩的一组数据中,众数和中位数分别是()A.1.55m,1.55mB.1.55m,1.60mC.1.60m,1.65mD.1.60m,1.70m8.(3分)圆锥的底面直径是80cm,母线长90cm,则它的侧面积是()A.3
60πcm2B.720πcm2C.1800πcm2D.3600πcm29.(3分)如图,在菱形ABOC中,∠ABO=120°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,
则该反比函数的表达式为()A.y=﹣B.y=﹣C.y=﹣D.y=﹣10.(3分)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=20,CE=15,CF=7,AF=24,则BE的长为()A.10B.C.15D.二
.填空题(共6小题,满分24分,每小题4分)11.(4分)已知(x﹣y)2﹣2x+2y+1=0,则x﹣y=.12.(4分)2018年3月2日,大型记录电影《厉害了,我的国》登陆全国各大院线.某影院针对这一影片推出了特惠活动:票价每人30元,团体购票超
过10人,票价可享受八折优惠,学校计划组织全体教师观看此影片.若观影人数为a(a>10),则应付票价总额为元.(用含a的式子表示)13.(4分)已知(a+1)2与互为相反数,则a=.则b=.14.(4分)已知等腰三角形的一条边等于4,另一条边等于9,那么这个三角形的第三边是
.15.(4分)如图,AB,AC分别为⊙O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n等于.16.(4分)已知,在Rt△ABC中,∠C=90°,AC=15,BC=8,D为AB的中点,E点在边AC上,将△BDE沿DE折叠得到△B1DE,若△B1DE与△ADE重叠
部分面积为△ADE面积的一半,则CE=.三.解答题(共3小题,满分17分)17.(6分)计算:()﹣1+4cos60°﹣|﹣3|+﹣(﹣2017)0+(﹣1)2016.18.(5分)先化简,再求值:(1﹣)÷,其中x=﹣219.(6分)如图,在△ABC中,AB=AC,∠D
AC是△ABC的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)(1)作∠DAC的平分线AM;(2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE、CF探究与猜想:若∠BAE=15°,则∠B=.四.解答题(
共3小题,满分21分,每小题7分)20.(7分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7;乙:5,7,8,7,8,9,7,9,10,10;丙:7,6,8,
5,4,7,6,3,9,5.(1)根据以上数据求出表中a,b,c的值;平均数中位数方差甲88b乙a82.2丙6c3(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,用列举法求甲、乙相邻出场的概率.21.(7分)多好
佳水果店在批发市场购买某种水果销售,第一次用1500元购进若干千克,并以每千克9元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1694元所购买的水果比第一次多20千克,以每千克10元售
出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价45%售完剩余的水果.(1)求第一次水果的进价是每千克多少元.(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?22.(7分)如图,在一个坡角为30°的
斜坡上有一电线杆AB,当太阳光与水平线成45°角时,测得该杆在斜坡上的影长BC为20m.求电线杆AB的高(精确到0.1m,参考数值:≈1.73,≈1.41).五.解答题(共3小题,满分28分)23.(
9分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值
?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.24.(9分)如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,
过点A作PC的垂线,点D为垂足,AD交⊙O于点E.(1)如图1,求证:∠DAC=∠PAC;(2)如图2,点F(与点C位于直径AB两侧)在⊙O上,,连接EF,过点F作AD的平行线交PC于点G,求证:FG=DE+DG;(3)在(2)的
条件下,如图3,若AE=DG,PO=5,求EF的长.25.(10分)如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向点A匀速运动,同时点Q由A出发沿AC方向向点C
匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥BC.(2)设△AQP面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?
若存在,求出此时t的值;若不存在,请说明理由.(4)如图2,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.2018年广东省汕头市澄海区中考数学模拟试卷(4月份)参考答案与试题
解析一.选择题(共10小题,满分24分)1.【解答】解:2018的相反数﹣2018,故选:B.2.【解答】解:将12000亿斤用科学记数法表示应为1.2×104亿斤.故选:C.3.【解答】解:A、x2+2x2=3x2,故此选项错
误;B、(﹣2x2)3=﹣8x6,故此选项错误;C、x2•(﹣x3)=﹣x5,故此选项正确;D、2x2÷x2=2,故此选项错误.故选:C.4.【解答】解:∵AO平分∠BAC,AO⊥BC,∴∠BAO=∠CAO,∠AOB=∠AOC=90°,∴∠B=∠C,∵DO∥AC,∴∠BOD=∠C
,∴∠B=∠BOD,∴DB=DO,又∵DE⊥BO,∴ED平分∠BDO,∵∠B=43°,∴∠BDE=47°,∴∠BAO=∠EDO=∠AOD=∠CAO=∠CGH=47°,故选:A.5.【解答】解:第一个图形的俯视图为圆,是中心对称图形,故正确;第二个图形的俯视图为圆,是中心对称图形,故正确;第三个
图形的俯视图是三角形,不是中心对称图形,故错误;第四个图形的俯视图为圆,是中心对称图形,故正确;故选:C.6.【解答】解:解不等式x﹣a>0,得:x>a,解不等式5﹣2x>1,得:x<2,则不等式组的解集为a<x<2,
∵不等式组有唯一整数解,∴0≤a<1,故选:B.7.【解答】解:出现次数最多的数为1.55m,是众数;21个数按照从小到大的顺序排列,中间一个是1.60m,所以中位数是1.60m.故选:B.8.【解答】解:圆锥的侧面积=
×80π×90=3600cm2,故选:D.9.【解答】解:过点C作CD⊥x轴于D,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),点A向下平移2个单位的点为(﹣a﹣a,a﹣
2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为y=﹣.故选:B.10.【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∴△AEB∽△AFD
,∴==,设BE=5x,则DF=6x,AB=7+6x,在△ABE中,(7+6x)2=(5x)2+202,11x2+84x﹣351=0,解得x1=3,x2=﹣(舍去),∴BE=5x=15.故选:C.二.填空题(共6小题,满分24分,每小
题4分)11.【解答】解:∵(x﹣y)2﹣2x+2y+1=(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)2=0,∴x﹣y﹣1=0.∴x﹣y=1.故答案为:1.12.【解答】解:根据题意得:30a×0.8=24a,则应付票价总额为24a元,故答案为:24a13.【解答】解:∵(a+1)2与
互为相反数,∴(a+1)2+=0,则a+1=0且b﹣1=0,解得:a=﹣1、b=1,故答案为:﹣1、1.14.【解答】解:当4为底时,其它两边都为9,4、9、9可以构成三角形;当4为腰时,其它两边为4和9,因为4+4=8<9,所以不能构成三角形.故答案
为:9.15.【解答】解:连接AO,BO,CO.∵AB、AC分别为⊙O的内接正六边形、内接正方形的一边,∴∠AOB==60°,∠AOC==90°,∴∠BOC=30°,∴n==12,故答案为:1216.【解答】解:情形1:如图1中,设AD交EB1于O,当DO=OA时,
△B1DE与△ADE重叠部分面积为△ADE面积的一半.作DM⊥BE于M,DN⊥EB1于N.∵BC=8,AC=15,∠C=90°,∴AB==17,∵D是AB中点,∴BD=AD=,∵∠BED=∠DEB1,∴D
M=DN,∵===2,∴BE=2EO,∵BE=EB1,∴EO=OB1,∵DO=OA,∴四边形DEAB1是平行四边形,∴DB1=BD=AE=,∴CE=AC﹣AE=情形2:如图2中,当DB1平分线段AE时,满足条件.∵BD=AD,
EO=OA,∴OD∥BE,∴∠BED=∠EDO=∠BDE,∴BE=BD=,在Rt△BCE中,EC===.综上所述,满足条件的CE的值为或.三.解答题(共3小题,满分17分)17.【解答】解:原式=2+2﹣3+3﹣1
+1=4.18.【解答】解:(1﹣)÷=•=•=,当x=﹣2时,原式==2.19.【解答】解:如图所示,∠B=55°.理由如下:∵AB=AC,∴∠ABC=∠ACB,∵AM平分∠DAC,∴∠DAM=∠CAM,而∠D
AC=∠ABC+∠ACB,∴∠CAM=∠ACB,∴EF垂直平分AC,∴OA=OC,∠AOF=∠COE,在△AOF和△COE中,∴△AOF≌△COE,∴OF=OE,即AC和EF互相垂直平分,∴四边形AECF的
形状为菱形.∴EA=EC,∴∠EAC=∠ACB=∠B=.故答案为:55°四.解答题(共3小题,满分21分,每小题7分)20.【解答】解:(1)乙的平均数a==8;∵甲的平均数是8,∴甲的方差为b=[(5﹣8)2+2(7﹣8)2+4(8﹣8)2+
(9﹣8)2+2(10﹣8)2]=2;把丙运动员的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,则中位数c==6;(2)∵甲的方差<乙的方差<丙的方差,而方差越小,数据波动越小,∴甲
的成绩最稳定.(3)根据题意画图如下:∵共有6种情况数,甲、乙相邻出场的有4种情况,∴甲、乙相邻出场的概率是=.21.【解答】解:(1)设第一次水果的进价是每千克x元,则第二次水果的进价是每千克1.1x元,根
据题意,得:﹣=20,解得:x=2,经检验,x=2是原方程的解,且符合题意.答:第一次水果的进价是每千克2元.(2)第一次购买水果1400÷2=700(千克),第一次利润为700×(9﹣2)=4900(元).第二次购买水果700+20=7
20(千克),第二次利润为100×(10﹣2.2)+(720﹣100)×(10×0.55﹣2.2)=2826(元).4900+2826=7726(元).答:该水果店在这两次销售中,总体上是盈利了,盈利了7726元.22.【解答】解:过点C作CD⊥AB交AB延长线于点D.在R
t△BCD中,BD=BC•sin∠BCD=20×sin30°=10,CD=BC•cos30°=20×=10,在Rt△ACD中,∵∠ACD=45°,∴∠DAC=∠ACD=45°,则AD=CD=10,∴AB=AD﹣BD=10﹣10=
10(﹣1)≈10(1.73﹣1)=7.3(m),所以,电线杆AB的高约为7.3m.五.解答题(共3小题,满分28分)23.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D
坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,
∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平
分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P,必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线
段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.24.【解答】(1)证明:连接OC,∵PC为⊙O的切线,∴OC⊥PC,∵AD⊥PC,∴OC∥AD,∴∠OCA=∠DAC,∵OC=OA,∴∠PAC=∠
OCA,∴∠DAC=∠PAC;(2)证明:连接BE交GF于H,连接OH,∵FG∥AD,∴∠FGD+∠D=180°,∵∠D=90°,∴∠FGD=90°,∵AB为⊙O的直径,∴∠BEA=90°,∴∠BED=90°,∴∠D=∠HGD=∠BED=90°,∴四边形HGDE是矩形,
∴DE=GH,DG=HE,∠GHE=90°,∵=,∴∠HEF=∠FEA=∠BEA==45°,∴∠HFE=90°﹣∠HEF=45°,∴∠HEF=∠HFE,∴FH=EH,∴FG=FH+GH=DE+DG;(3)解:设OC交HE于M,连接OE、OF,∵EH=HF,OE=OF,HO=HO,
∴△FHO≌△EHO,∴∠FHO=∠EHO=45°,∵四边形GHED是矩形,∴EH∥DG,∴∠OMH=∠OCP=90°,∴∠HOM=90°﹣∠OHM=90°﹣45°=45°,∴∠HOM=∠OHM,∴HM=MO,∵OM⊥BE,∴BM=ME,∴OM=A
E,设OM=a,则HM=a,AE=2a,AE=DG,DG=3a,∵∠HGC=∠GCM=∠GHE=90°,∴四边形GHMC是矩形,∴GC=HM=a,DC=DG﹣GC=2a,∵DG=HE,GC=HM,∴ME=CD=2a,BM=2a,在Rt△B
OM中,tan∠MBO===,∵EH∥DP,∴∠P=∠MBO,tanP==,设OC=k,则PC=2k,在Rt△POC中,OP=k=5,解得:k=,OE=OC=,在Rt△OME中,OM2+ME2=OE2,5a2=5,a=1,∴HE=3a=3,在Rt△HFE中,∠HEF=45°,∴E
F=HE=3.25.【解答】解:∵AB=10cm,AC=8cm,BC=6cm,∴由勾股定理逆定理得△ABC为直角三角形,∠C为直角.(1)BP=2t,则AP=10﹣2t.∵PQ∥BC,∴,即,解得t=,∴当t=s时,PQ∥BC.(2)如答图1所示,过P点作PD⊥AC于点D.∴PD∥BC,∴,即,解
得PD=6﹣t.S=×AQ×PD=×2t×(6﹣t)=﹣t2+6t=﹣(t﹣)2+,∴当t=s时,S取得最大值,最大值为cm2.(3)假设存在某时刻t,使线段PQ恰好把△ABC的面积平分,则有S△AQP=S△ABC,
而S△ABC=AC•BC=24,∴此时S△AQP=12.由(2)可知,S△AQP=﹣t2+6t,∴﹣t2+6t=12,化简得:t2﹣5t+10=0,∵△=(﹣5)2﹣4×1×10=﹣15<0,此方程无解,∴不存在某时刻t,使线段PQ恰好把△ABC的面积平分.(4)方法1、假设存在时刻t,使四边形A
QPQ′为菱形,则有AQ=PQ=BP=2t.如答图2所示,过P点作PD⊥AC于点D,则有PD∥BC,∴,即,解得:PD=6﹣t,AD=8﹣t,∴QD=AD﹣AQ=8﹣t﹣2t=8﹣t.在Rt△PQD中,由勾股定理得:QD2+PD2=
PQ2,即(8﹣t)2+(6﹣t)2=(2t)2,化简得:13t2﹣90t+125=0,解得:t1=5,t2=,∵t=5s时,AQ=10cm>AC,不符合题意,舍去,∴t=.由(2)可知,S△AQP=﹣t2+6t,∴
S菱形AQPQ′=2S△AQP=2×(﹣t2+6t)=2×[﹣×()2+6×]=(cm2).所以存在时刻t,使四边形AQPQ′为菱形,此时菱形的面积为cm2.(或连接QQ′交AB于N,利用相似三角形的性质,求出QN,菱形的面积等于△AQN面积的4倍)方法2、如图2,过点Q作QH⊥AB于H,
∵四边形AQPQ'是菱形,∴AQ=PQ=2t,∴AH=AP=(10﹣2t)=5﹣t,∵∠AHQ=∠ACB=90°,∠HAQ=∠CAB,∴△AHQ∽△ACB,∴=,∴=,∴t=,QH=,∴S菱形AQPQ′=2S△AQP=2×(10﹣2×)×=cm2.所以存在时刻t=秒,使
四边形AQPQ′为菱形,此时菱形的面积为cm2.