中考数学冲刺练习 四边形解答题专练(含答案)

DOC
  • 阅读 43 次
  • 下载 0 次
  • 页数 15 页
  • 大小 427.500 KB
  • 2022-11-27 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
中考数学冲刺练习 四边形解答题专练(含答案)
可在后台配置第一页与第二页中间广告代码
中考数学冲刺练习 四边形解答题专练(含答案)
可在后台配置第二页与第三页中间广告代码
中考数学冲刺练习 四边形解答题专练(含答案)
可在后台配置第三页与第四页中间广告代码
中考数学冲刺练习 四边形解答题专练(含答案)
中考数学冲刺练习 四边形解答题专练(含答案)
还剩5页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 15
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】中考数学冲刺练习 四边形解答题专练(含答案) .doc,共(15)页,427.500 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-59794.html

以下为本文档部分文字说明:

第1页共15页中考数学冲刺练习四边形解答题专练1.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线与BE的延长线相交于点F,连接CF.(1)求证:四边形CDAF为平行四边形;(2)若∠BAC=90°,AC=AF,且AE=2,求线段

BF的长.2.如图,已知在等边△ABC中,D、F分别为CB、BA上的点,且CD=BF,以AD为边作等边三角形ADE.求证:(1)△ACD≌△CBF;(2)四边形CDEF为平行四边形.3.如图,已知△ABC中,D是BC边的中点,AE平

分∠BAC,BE⊥AE于E点,若AB=5,AC=7,求ED.第2页共15页4.如图,△ABC的中线BE,CF相交于点G,P,Q分别是BG,CG的中点.(1)求证:四边形EFPQ是平行四边形;(2)请直接写出BG与GE的数量关系:.(不要求证明)5.如图,已知E为□ABCD中DC边的延长线上的一点,

且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.6.如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B

出发向点C运动,运动到点C即停止.点P、Q的速度的速度都是1cm/s,连结PQ,AQ,CP,设点P、Q运动的时间为t(s).(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?(3)分别求出(2)中菱形AQCP的周长和面积.第3页共15页7.(1)如

图,纸片▱ABCD中,AD=5,S▱ABCD=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为()A.平行四边形B.菱形C.矩形D.正方形(2)如图,在(1)中

的四边形纸片AEE/D中,在EE/上取一点F,使EF=4,剪下△AEF,将它平移至△DE/F/的位置,拼成四边形AFF/D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.图1图28.如图,

点E、F为线段BD的两个三等分点,四边形AECF是菱形.(1)试判断四边形ABCD的形状,并加以证明;(2)若菱形AECF的周长为20,BD为24,试求四边形ABCD的面积.9.如图,在△ABC中,点O是AC边上一动

点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.(3)在(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,求△ABC的

面积.第4页共15页10.如图,在矩形ABCD中,沿EF将矩形折叠,使A、C重合,AC与EF交于点H.(1)求证:△ABE≌△AGF;(2)若AB=6,BC=8,求△ABE的面积.11.如图,四边形ABCD为平行四边形纸片.把纸片ABCD折叠,使点B恰好落在CD边上,折痕

为AF.且AB=10cm,AD=8cm,DE=6cm.(1)求证:□ABCD是矩形;(2)求BF的长;(3)求折痕AF的长.12.如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.(1)猜

想线段GF与GC有何数量关系?并证明你的结论;第5页共15页(2)若AB=3,AD=4,求线段GC的长.13.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形的边长;(3)在(2)的条件下折痕EF的长.14.如图,将矩

形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.第6页共

15页15.如图,在正方形ABCD中,E是对角线BD上任意一点(BE>DE),CE的延长线交AD于点F,连接AE.(1)求证:△ABE∽△FDE;(2)当BE=3DE时,求tan∠1的值.16.如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=

90°,且EF交正方形外角的平分线CF于点F.(1)证明:∠BAE=∠FEC;(2)证明:△AGE≌△ECF;(3)求△AEF的面积.17.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1

)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.第7页共15页18.如图,四边形ABCD、DEFG都是正方形,连接AE、CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.19.长方形ABCD

中,AD=10,AB=8,将长方形ABCD折叠,折痕为EF.(1)当A′与B重合时(如图1),EF=;(2)当直线EF过点D时(如图2),点A的对应点A′落在线段BC上,求线段EF的长;(3)如图3,点A的对应点A′落在线段B

C上,E点在线段AB上,同时F点也在线段AD上,则A′在BC上的运动距离是;20.如图,在边长为l的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF

,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.第8页共15页第9页共15页参考答案1.解:(1)∵E是AD的中点,∴AE=ED,∵AF∥BC,∴∠AFE=∠DBE

,∠FAE=∠BDE,∴△AFE≌△DBE,∴AF=BD,∵AD是BC边中线,∴CD=BD,∴AF=CD,∴四边形CDAF是平行四边形,(2)如图过F点作FG⊥AB交BA的延长线于点G.∵∠CAB=90°,

AD是BC边中线,∴AD=CD又∵AC=AF,AF=CD,∴AC=AD=CD,∴△ACD是等边三角形,∴∠ACB=60°,∴∠ABC=30°,又∵AF∥BC,∴∠ABC=∠FAG=30°∵AE=2,∴AD=AC=AF=4,∴在Rt△FAG和Rt△CAB中,F

G=FA×sin∠FAG=4sin30°=2,AG=FA×cos∠FAG=4cos30°=2,AB=AC×tan∠ACB=AC×tan60°=4,∴GB=AG+BG=6∴在Rt△FBG中,BF==4.2.解:(1

)∵△ABC为等边三角形,∴AC=CB,∠ACD=∠CBF=60°.又∵CD=BF,∴△ACD≌△CBF.(2)∵△ACD≌△CBF,∴AD=CF,∠CAD=∠BCF.∵△AED为等边三角形,∴∠ADE=60°,且AD=DE.∴FC=

DE.∵∠EDB+60°=∠BDA=∠CAD+∠ACD=∠BCF+60°,∴∠EDB=∠BCF.∴ED∥FC.∵ED//=FC,∴四边形CDEF为平行四边形.3.ED=1,提示:延长BE,交AC于F点.4.(1)证明:∵BE,CF是△ABC的中线,∴EF是△

ABC的中位线,∴EF∥BC且EF=BC.∵P,Q分别是BG,CG的中点,∴PQ是△BCG的中位线,∴PQ∥BC且PQ=BC,∴EF∥PQ且EF=PQ.∴四边形EFPQ是平行四边形.(2)BG=2GE.

5.连结BE,CEAB□ABECBF=FC.□ABCDAO=OC,∴AB=2OF.6.解:(1)当四边形ABQP是矩形时,BQ=AP,即:t=8﹣t,解得t=4.第10页共15页答:当t=4时,四边形ABQP是矩形;(2)设t秒后,四边形AQCP是菱形当AQ=CQ,即=8﹣t时,四边形AQCP

为菱形.解得:t=3.答:当t=3时,四边形AQCP是菱形;(3)当t=3时,CQ=5,则周长为:4CQ=20cm,面积为:4×8﹣2××3×4=20(cm2).7.解:(1)C.(2)①证明:∵AD=BC=5,S▱ABCD=15,AE⊥BC,∴

AE=3.如图,∵EF=4,∴在Rt△AEF中,AF=5.∴AF=AD=5.又△AEF经平移得到△DE'F',∴AF∥DF',AF=DF',∴四边形AFF'D是平行四边形.又AF=AD,∴四边形AFF'D是菱形.②如图,连接AF',DF.在Rt△DE'F中,∵E

'F=E'E-EF=5-4=1,DE'=3,∴DF=10.在Rt△AEF'中,∵EF'=E'E+E'F'=5+4=9,AE=3,∴AF'=310.∴四边形AFF'D的两条对角线长分别为10,310.8.解:(1)四边形ABCD为菱形.理由如下:如图,连接AC交BD于点O,∵四

边形AECF是菱形,∴AC⊥BD,AO=OC,EO=OF,又∵点E、F为线段BD的两个三等分点,∴BE=FD,∴BO=OD,∵AO=OC,∴四边形ABCD为平行四边形,∵AC⊥BD,∴四边形ABCD为菱形;(2)∵四边形AECF为菱形,且周长为20,∴AE=5,∵BD

=24,∴EF=8,OE=EF=×8=4,由勾股定理得,AO===3,∴AC=2AO=2×3=6,∴S四边形ABCD=BD•AC=×24×6=72.第11页共15页9.(1)证明:∵EF∥BC,∴∠OEC=∠BCE,∵CE平分∠ACB,∴∠BCE=∠OCE,∴∠OEC=∠OCE,∴EO=CO,同理

:FO=CO,∴EO=FO;(2)解:当点O运动到AC的中点时,四边形CEAF是矩形;理由如下:由(1)得:EO=FO,又∵O是AC的中点,∴AO=CO,∴四边形CEAF是平行四边形,∵EO=FO=CO,∴EO=FO=AO=CO,∴EF=AC,∴四边形CEAF是矩形;(3

)解:由(2)得:四边形CEAF是矩形,∴∠AEC=90°,∴AC===5,△ACE的面积=AE×EC=×3×4=6,∵122+52=132,即AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,∴△ABC的面积=AB•AC=×12×5=30.10.11.(1)证

明:∵把纸片ABCD折叠,使点B恰好落在CD边上,∴AE=AB=10,AE2=102=100.又∵AD2+DE2=82+62=100,∴AD2+DE2=AE2.∴△ADE是直角三角形,且∠D=90°.又∵四边形ABCD为平行四边形,∴□ABCD是矩形.(2)设BF=x,则EF=BF=x,EC=CD

-DE=10-6=4(cm),FC=BC-BF=8-x,在Rt△EFC中,EC2+FC2=EF2,即42+(8-x)2=x2.解得x=5.故BF=5cm.(3)在Rt△ABF中,由勾股定理得,AB2+BF2=AF2.∵AB=10cm,BF=5cm,∴AF=5(cm).12.解:(1)GF=GC.

理由如下:连接GE,∵E是BC的中点,∴BE=EC,∵△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,第12页共15页∵在矩形ABCD中,∴∠C=90°,∴∠EFG=90°,∵在Rt△GFE和Rt△GCE中,∴Rt△GFE≌Rt△GCE(HL),∴GF=GC;(2)设GC=x,则

AG=3+x,DG=3﹣x,在Rt△ADG中,42+(3﹣x)2=(3+x)2,解得x=4/3.13.解:14.解:(1)△AED≌△CEB′证明:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°,又∵∠B′EC=∠

DEA,∴△AED≌△CEB′;(2)由折叠的性质可知,∠EAC=∠CAB,∵CD∥AB,∴∠CAB=∠ECA,∴∠EAC=∠ECA,∴AE=EC=8﹣3=5.在△ADE中,AD=4,延长HP交AB于M,则PM⊥AB,∴PG=PM.∴PG+PH=PM+PH=HM=AD=4.15.(1)证明:在正方

形ABCD中,∵AB=BC,∠ABE=∠CBE=∠FDE=45°,在△ABE与△CBE中,,∴△ABE≌△CBE,∴∠BAE=∠ECB,∵AD∥BC,∴∠DFE=∠BCE,∴∠BAE=∠DFE,∴△ABE∽△FDE;(2)连接AC交BD于O,设正方形ABCD的边长为a

,∴BD=a,BO=OD=OC=a,第13页共15页∵BE=3DE,∴OE=OD=a,∴tan∠1=tan∠OEC==.16.解:17.(1)证明:∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC.(2)解:如图设AD

与EH交于点M.∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM是矩形,∴EF=DM,设正方形EFGH的边长为x,∵△AEH∽△ABC,∴=,∴=,∴x=,∴正方形EFGH的边长为cm,面积为cm2.18.(1)略;(2)AE⊥CG;19.解:第

14页共15页20.解:(1)∵四边形ABCD是正方形,∴∠D=∠ECQ=90°,∵E是CD的中点,∴DE=CE,又∵∠DEP=∠CEQ,∴△PDE≌△QCE(ASA);(2)①∵PB=PQ,∴∠PBQ=∠Q,∵AD∥BC,∴∠APB=∠PBQ=∠Q=∠EPD,∵△PDE≌△QC

E,∴PE=QE,∵EF∥BQ,∴PF=BF,∴在Rt△PAB中,AF=PF=BF,∴∠APF=∠PAF,∴∠PAF=∠EPD,∴PE∥AF,∵EF∥BQ∥AD,第15页共15页∴四边形AFEP是平行四边形;②当AP=时,四边形AFEP是菱形.设AP=x,则PD=1﹣x,若四边形AFE

P是菱形,则PE=PA=x,∵CD=1,E是CD中点,∴DE=,在Rt△PDE中,由PD2+DE2=PE2得(1﹣x)2+()2=x2,解得x=,即当AP=时,四边形AFEP是菱形.

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 112
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?