【文档说明】中考数学专题强化练习 圆(含答案).doc,共(10)页,224.500 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-59793.html
以下为本文档部分文字说明:
第1页共10页中考数学专题强化练习圆一、选择题1.如图,⊙O过正方形ABCD的顶点AB且与CD边相切,若AB=2,则圆的半径为()A.B.C.D.12.如图,△ABC的内切圆与三边分别相切于点D、E、F,则下列等式:①∠EDF=∠B;②2∠EDF=∠A+∠C;③2∠A=∠FE
D+∠EDF;④∠AED+∠BFE+∠CDF=180°.其中成立的个数是()A.1个B.2个C.3个D.4个二、填空题3.如图,PA,PB分别切⊙O于A,B,并与⊙O的切线,分别相交于C,D,已知△PCD的周长等于8cm,则PA=cm;
已知⊙O的直径是6cm,PO=cm.4.如图,AB是⊙O的直径,点D、E是半圆的三等分点,AE、BD的延长线交于点C,若CE=2,则图中阴影部分的面积为.5.如图,直线AB分别交x轴,y轴于点A(﹣4,0),B(0,3),点
C为y轴上的点,若以点C为圆心,CO长为半径的圆与直线AB相切时,则点C的坐标为.第2页共10页6.AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2
,则线段BQ的长为.7.如图,矩形ABCD的一边AD与⊙O相切于点E,点B在⊙O上、BC与⊙O相交于点F,AB=2,AD=7,FC=1,则⊙O的半径长为.8.如图,BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD延长线于点C,OE⊥AB于E,且AB=AC,若CD
=2,则OE的长为.9.如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为.10.我们发现:若AD是△A
BC的中线,则有AB2+AC2=2(AD2+BD2),请利用结论解决问题:如图,在矩形ABCD中,已知AB=20,AD=12,E是DC中点,点P在以AB为直径的半圆上运动,则CP2+EP2的最小值是.第3页共10页11.如图,以G(0,1)为圆心,半
径为2的圆与x轴交于A、B两点,与y轴交于C,D两点,点E为⊙O上一动点,CF⊥AE于F,则弦AB的长度为;当点E在⊙O的运动过程中,线段FG的长度的最小值为.三、解答题12.如图,已知AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D
,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若AF=6,EF=2,求⊙O的半径长.13.如图,在等腰△ABC中,AB=BC,以AB为直径的半圆分别交AC、BC于点D、E两
点,BF与⊙O相切于点B,交AC的延长线于点F.(1)求证:D是AC的中点;(2)若AB=12,sin∠CAE=,求CF的值.第4页共10页14.如图,△ABC中,∠C=90°,AC=3,AB=5,点O在BC边的中线AD上,⊙
O与BC相切于点E,且∠OBA=∠OBC.(1)求证:AB为⊙O的切线;(2)求⊙O的半径;(3)求tan∠BAD.四、综合题15.如图,正方形ABCD的边长为2,点E在边AD上(不与A、D重合),点F在边CD上,且∠EBF=45°.△ABE的外接圆O与
BC、BF分别交于点G、H.第5页共10页(1)在图1中作出圆O,并标出点G和点H;(2)若EF∥AC,试说明与的大小关系,并说明理由;(3)如图2所示,若圆O与CD相切,试求△BEF的面积.第6页共10页参考答案1.答案为:B.2.答案为:B.3.答案为:4,5.4.答案为:
π﹣.5.答案为:(0,)或(0,﹣12).解:设C(0,t),作CH⊥AB于H,如图,AB==5,∵以点C为圆心,CO长为半径的圆与直线AB相切,∴CH=OC,当t>3时,BC=t﹣3,CH=t,∵∠CBH=∠ABC,∴△BHC∽△
BOA,∴CH:OA=BC:BA,即t:4=(t﹣3):5,解得t=﹣12(舍去)当0<t<3时,BC=3﹣t,CH=t,同样证明△BHC∽△BOA,∴CH:OA=BC:BA,即t:4=(3﹣t):5,解得当t<0时,BC=3﹣t,C
H=﹣t,同样证明△BHC∽△BOA,∴CH:OA=BC:BA,即﹣t:4=(3﹣t):5,解得t=﹣12,综上所述,C点坐标为(0,)或(0,﹣12)6.答案为:.7.答案为:.8.答案为:.第7页共10页9.答案为:π
﹣2.解:连接OB,作OD⊥BC于D,如图,∵△ABC为等边三角形,∴AB=BC=AC=2,∠ABC=60°,∵⊙O是△ABC的内切圆,∴OH为⊙O的半径,∠OBH=30°,∵O点为等边三角形的外心,∴BH=CH=1,在Rt△OBH中,OH=BH=,∵S弓形AB=S扇形ACB﹣S△ABC,
∴阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O=3S扇形ACB﹣2S△ABC﹣S⊙O=3×﹣2××22﹣π×()2=π﹣2.10.答案为:68.解析:设点O为AB的中点,H为CE的中点,连接HO交半圆于点P,此时P
H取最小值,∵AB=20,四边形ABCD为矩形,∴CD=AB,EO=AD,∴OP=CE=AB=10,∴CP2+EP2=2(PH2+CH2).过H作HG⊥AB于g,∴HG=12,OG=5,∴PH=13,∴PH=3,∴CP2+EP2的最小值=2(9+25)
=68,11.答案为:2,﹣1.12.(1)证明:∵PD为⊙O的切线,∴OC⊥DP,∵AD⊥DP,∴OC∥AD,∴∠DAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠OAC=∠DAC,∴AC平分∠DAB;第8页共10页(2)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵CE平分∠
ACB,∴∠BCE=45°,∴∠BOE=2∠BCE=90°,∴∠OFE+∠OEF=90°,而∠OFE=∠CFP,∴∠CFP+∠OEF=90°,∵OC⊥PD,∴∠OCP=90°,即∠OCF+∠PCF=90°,而∠OCF=∠OEF,∴∠PCF=∠CFP,∴△PCF是等腰三角形;(3)解:
连结OE.∵AB为⊙O的直径,∴∠ACB=90°,∵CE平分∠ACB,∴∠BCE=45°,∴∠BOE=90°,即OE⊥AB,设⊙O的半径为r,则OF=6﹣r,在Rt△EOF中,∵OE2+OF2=EF2,∴r2+(6﹣r)2=(2)2,解得,r1=4,r2
=2,当r1=4时,OF=6﹣r=2(符合题意),当r2=2时,OF=6﹣r=4(不合题意,舍去),∴⊙O的半径r=4.13.(1)证明:连接DB,∴AB是⊙O直径,∴∠ADB=90°,∴DB⊥AC.又∵AB=BC.∴D是AC的中点.(2)解:
∵BF与⊙O相切于点B,∴∠ABF=90°,∵∠CAE=∠CBD,∴∠CBD=∠ABD,∠ABD=∠F,∴sin∠CAE=sin∠F=sin∠ABD,∴在△ADB和△ABF中,=,∵AB=12,∴AF=,AD=,∴CF=AF﹣AC=.14.(1)证明:如图,作OF垂直AB于点F,∵⊙O与BC
相切于点E,∴OE⊥BC第9页共10页又∠OBA=∠OBC,∴OE=OF,∴AB为⊙O的切线(2)解:∵∠C=90°,AC=3,AB=5,∴BC==4,又D为BC的中点,∴CD=DB=2,∵S△ACD
+S△COB+S△AOB=S△ABC设⊙O的半径为r,即AC•CD+BD•r+∴6+2r+5r=12∴r=∴⊙O的半径为(3)解:∵∠C=90°,OE⊥BC,∴OE∥AC,∴Rt△ODE∽Rt△ADC,∴,∴DE=,∴BF=BE=,∴AF=AB﹣BF=,∴tan∠BAD==.15.解
:(1)如图1,(2)如图2,连接BD、EG、EH,∵EF∥AC,∴DE=DF,又∵BD平分∠EDF,∴BD为EF的中垂线,∴BE=BF,BD平分∠EBF,又∵∠EBF=45°=∠DBC,∴∠EBD=∠DBF=∠HBG=22.5°,∴∠EBG=67.5°,又∵∠EGB=90°,∴∠BE
G=22.5°=∠HBG,∴=,(3)如图3,将△BCF绕点B逆时针旋转90°到△BAP,过点B作BQ⊥EF,设⊙O与CD相切于点M,连接OM,延长MO交AB于点N,在△BPE与△BFE中,,∴△BPE≌△BFE(SAS),∴∠A
EB=∠BEQ,PE=EF,由∠AEB=∠BEQ可知,第10页共10页在△AEB和△QEB中,,∴△AEB≌△QEB(AAS),∴BQ=AB=2,由PE=EF可知,C△EFD=ED+DF+EF=ED+DF+PE=ED+DF+PA+AE=ED+AE+DF+FC=4,设
AE=a,DF=b,则DE=2﹣a,BE=,∵O为BE中点,且MN∥AD,∴ON==,∴OM=2﹣,又BE=2OM,∴=4﹣a,解得a=,∴ED=,又∵C△EFD=4,DF=b,∴EF=4﹣b﹣=﹣b,在RT△EDF中,()2+b2=(﹣b)2,解
得b=,∴EF=﹣=,∴S△BEF=××2=.