【文档说明】中考数学 解答题 强化练习 三(含答案).doc,共(7)页,153.500 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-59777.html
以下为本文档部分文字说明:
第1页共7页中考数学解答题强化练习三1.计算:11112(3)3tan30−+−−.2.如图,已知△ABC中,∠1=∠2,AE=AD,求证:DF=EF.3.已知□ABCD中,AE平分∠DAB交DC于E,BF平分∠ABC交DC
于F,DC=8cm,AD=3cm,求EF的长.第2页共7页4.为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练,物理、化学各有4各不同的操作实验题目,物理用番号①、②、③、④代表,化学用字母a
、b、c、d表示,测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.(1)请用树形图法或列表法,表示某个同学抽签的各种可能情况.(2)小张
同学对物理的①、②和化学的b、c号实验准备得较好,他同时抽到两科都准备的较好的实验题目的概率是多少?5.某花圃用花盆培育某种花苗,经试验发现每盆花的盈利与每盆花中花苗的株数有如下关系:每盆植入花苗4株时,平均单
株盈利5元;以同样的栽培条件,若每盆每增加1株花苗,平均单株盈利就会减少0.5元.要使每盆花的盈利为24元,且尽可能地减少成本,则每盆花应种植花苗多少株?第3页共7页6.如图,直线y=2x﹣6与反比例函数y=kx
-1的图象交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得△ABC为等腰三角形?若存在,求出点C的坐标;若不存在,请说明理由.7.如图1,AB为半圆的直径,点O为圆心,AF为半圆的切线,过半圆上的点C作CD∥AB交AF于点D,连接B
C.(1)连接DO,若BC∥OD,求证:CD是半圆的切线;(2)如图2,当线段CD与半圆交于点E时,连接AE,AC,判断∠AED和∠ACD的数量关系,并证明你的结论.第4页共7页8.如图,在平面直角坐标
系中,边长为1的正方形ABCD的顶点A在直线y=2x+4上,点B在第二象限,C,D两点均在x轴上,且点C在点D的左侧,抛物线y=﹣(x﹣m)2+n的顶点P在直线y=2x+4上运动,且这条抛物线交y轴于点E.(1)写
出A,C两点的坐标;(2)当抛物线y=﹣(x﹣m)2+n经过点C时,求抛物线所对应的函数表达式;(3)当点E在AC所在直线上时,求m的值;(4)当点E在x轴上方时,连接CE,DE,当△CDE的面积随m的增大而增大时,直接写出m的取值范围.第5页
共7页参考答案1.答案为:3.2.证明:在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AB=AC,∵AE=AD,∴AB﹣AD=AC﹣AE,即BD=CE,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴DF=EF.3.解:∵四边形A
BCD是平行四边形,∴AB∥DC,∴∠DEA=∠EAB,∠CFB=∠FBA,∵AE平分∠DAB交DC于E,BF平分∠ABC交DC于F,∴∠DAE=∠EAB,∠CBF=∠FBA,∴∠DEA=∠DAE,∠CFB=∠CBF,∴AD=D
E,FC=CB,∵AD=CB=3cm,∴DE=CF=3cm,∴EF=DC﹣DE﹣CF=8cm﹣3cm﹣3cm=2cm.4.解:(1)画树状图得:如图,可得某个同学抽签的所有等可能情况有16种;(2)∵小张同时抽到两科都准备的较好的实验题目的有①b,①c,②b,②c共4种情
况,∴他同时抽到两科都准备的较好的实验题目的概率是0.25.5.解:设每盆花在植苗4株的基础上再多植x株,由题意得:(4+x)(5﹣0.5x)=24,解得:x1=2,x2=4,因为要尽可能地减少成本,所以x2=4应舍去,即x=2,则x+4=6,答
:每盆花植花苗6株时,每盆花的盈利为24元.6.第6页共7页7.(1)证明:连接OC,∵AF为半圆的切线,AB为半圆的直径,∴AB⊥AD,∵CD∥AB,BC∥OD,∴四边形BODC是平行四边形,∴OB=CD,∵OA=OB,∴CD
=OA,∴四边形ADCO是平行四边形,∴OC∥AD,∵CD∥BA,∴CD⊥AD,∵OC∥AD,∴OC⊥CD,∴CD是半圆的切线;(2)解:∠AED+∠ACD=90°,理由:如图2,连接BE,∵AB为半圆的直径,∴∠AEB=90°,∴∠EBA+∠BA
E=90°,∵∠DAE+∠BAE=90°,∴∠ABE+∠DAE,∵∠ACE=∠ABE,∴∠ACE=∠DAE,∵∠ADE=90°,∴∠DAE+∠AED=∠AED+∠ACD=90°.8.解:(1)∵正方形的边长为1,∴点A的纵坐标为1.∵将y=1代入y=2x+4得:2x+4=1,解得;x=﹣1.5
,∴A(﹣1.5,1).∴D(﹣1.5,0)∵CD=1,∴C(-2.5,0)(2)∵抛物线y=﹣(x﹣m)2+n的顶点P在直线y=2x+4上运动,∴n=2m+4.∴抛物线的解析式为y=﹣(x﹣m)2+2m+4.∵抛物线经过点C(﹣2.5,0),∴(﹣2.5﹣m)2+2m+4=0.解得:m1=m
2=﹣1.5.∴n=2×(﹣1.5)+4=1.∴抛物线的解析式为y=﹣(x+1.5)2+1(y=﹣x2﹣3x﹣).(3)∵抛物线y=﹣(x﹣m)2+n的顶点P在直线y=2x+4上运动,∴n=2m+4.∴抛物线的解析式为y=﹣(x﹣m
)2+2m+4.∵将x=0代入得:y=﹣m2+2m+4.∴E(0,﹣m2+2m+4).第7页共7页设直线AC的解析式为y=kx+b.∵将A(﹣1.5,1、C(2.5,0)代入得:,解得k=1,b=2.5,∴直线AC的解析式为y=x+2.5.∵点E在直线AC上,∴﹣m2+2m+4=2.5
.解得:m1=1﹣,m2=1+.(4)S△CDE=DC•EO=﹣m2+m+2,∵m=﹣=1,a=﹣<0,∴当m≤1时,y随x的增大而增大.令﹣m2+m+2=0,解得:m1=1﹣,m2=1+(舍去).∵点E在x轴的上方,∴m>1﹣.∴m的范围是1﹣<m≤1.