【文档说明】中考数学 圆 解答题 培优题练习(含答案).doc,共(12)页,292.500 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-59765.html
以下为本文档部分文字说明:
第1页共12页中考数学圆解答题培优题4.181.如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长
.2.如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60º.(1)求⊙O的直径;(2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切;(3)若动点E以2cm/s的速度从A点出发沿着AB方向运
动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为t(s)(0<t<2),连结EF,当t为何值时,△BEF为直角三角形.第2页共12页3.如图,直径为10的半圆O,tan∠DBC=,∠BCD的平分
线交⊙O于F,E为CF延长线上一点,且∠EBF=∠GBF.(1)求证:BE为⊙O切线;(2)求证:BG2=FG•CE;(3)求OG的值.4.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为A
B上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=,求DG
的长,第3页共12页5.如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC边于点D,E是边BC的中点,连接DE、OD,(1)求证:直线DE是⊙O的切线;(2)连接OC交DE于F,若OF=FC,试判断△ABC的形状,并说明理由;(3)若,
求⊙O的半径.6.如图,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作EC⊥OB,交⊙O于点C,作直径CD,过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.(1)求证:AC平
分∠FAB;(2)求证:BC2=CE•CP;(3)当AB=4错误!未找到引用源。且错误!未找到引用源。时,求劣弧BD的长度.第4页共12页7.如图,AB是⊙O的直径,点C为⊙O上一点,点P是半径OB上
一动点(不与O,B重合),过点P作射线1⊥AB,分别交弦BC,于D,E两点,在射线l上取点F,使FC=FD.(1)求证:FC是⊙O的切线;(2)当点E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若tan
∠ABC=,且AB=20,求DE的长.8.如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;(2)若tan∠F=0.75,CD=24
,求⊙O的半径;(3)请问的值为定值吗?如是,请写出计算过程,若不是请说明理由.第5页共12页第6页共12页参考答案1.解:(1)证明:∵圆心O在BC上,∴BC是圆O的直径,∴∠BAC=90°,连接OD,∵AD平分∠BAC,∴∠BAC=2∠DAC,∵∠DOC=2∠DAC,∴∠
DOC=∠BAC=90°,即OD⊥BC,∵PD∥BC,∴OD⊥PD,∵OD为圆O的半径,∴PD是圆O的切线;(2)证明:∵PD∥BC,∴∠P=∠ABC,∵∠ABC=∠ADC,∴∠P=∠ADC,∵∠PBD+∠ABD=180°,∠ACD+
∠ABD=180°,∴∠PBD=∠ACD,∴△PBD∽△DCA;(3)解:∵△ABC为直角三角形,∴BC2=AB2+AC2=62+82=100,∴BC=10,∵OD垂直平分BC,∴DB=DC,∵BC为圆O的直径,∴∠BDC=90°,在Rt△
DBC中,DB2+DC2=BC2,即2DC2=BC2=100,∴DC=DB=5,∵△PBD∽△DCA,∴=,则PB===.2.解:(1)证明:如图,连接CD,则CD⊥AB,又∵AC=BC,∴AD=BD,即点D是AB的中
点.(2)解:DE是⊙O的切线.理由是:连接OD,则DO是△ABC的中位线,∴DO∥AC.又∵DE⊥AC,∴DE⊥DO,又∵OD是⊙O的半径,∴DE是⊙O的切线.(3)∵AC=BC,∴∠B=∠A,∴cos∠B=cos∠A=.∵cos∠B==,BC=18,∴BD=6,∴AD=6.第7页共1
2页∵cos∠A==,∴AE=2.在Rt△AED中,DE=4.3.解:(1)证明:由同弧所对的圆周角相等得∠FBD=∠DCF,又∵CF平分∠BCD,∴∠BCF=∠DCF,已知∠EBF=∠GBF,∴∠EBF=∠∠BCF,∵BC为⊙O直径,∴∠BFC=90°,
∴∠FBC+∠FCB=90°,∴∠FBC+∠EBF=90°,∴BE⊥BC,∴BE为⊙O切线;(2)证明:由(1)知∠BFC=∠EBC=90°,∠EBF=∠ECB,∴△BEF∽△CEB,∴BE2=EF•CE,又∠EBF=∠GBF,BF⊥EG,∴∠BFE=∠BFG=90°,在△BEF与△BGF中,,∴
△BEF≌△BGF,∴BE=BG,EF=FG,∴BG2=FG•CE;(3)如图,过G作GH⊥BC于H,∵CF平分∠BCD,∴GH=GD,∵tan∠DBC=,∴sin∠DBC=,∵BC=10,∴BD=8,BG=BD﹣GD=8﹣GD,∴=,∴GD=GH=3,BG=5,BH=4
,∵BC=10,∴OH=OB﹣BH=1,在Rt△OGH中,由勾股定理得OG=.4.解:(1)证明:如图,连接OD,第8页共12页∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°
,∴OD⊥BC,∴BC为圆O的切线;(2)解:连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴=,即AD2=AB•AF=xy,则AD=;(3)解:连接EF,在Rt△BOD中,sinB==,设
圆的半径为r,可得=,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF==,∴AF=AE•sin∠AEF=10×=,∵AF∥OD,∴===,即DG=AD,∴AD===,则DG=×=.5.解:如图所示,连接B
D,(1)∵AB是直径,∴∠ADB=90°,∵O是AB的中点,∴OA=OB=OD,∴∠OAD=∠ODA,∠ODB=∠OBD,同理在Rt△BDC中,E是BC的中点,∴∠EDB=∠EBD,∵∠OAD+∠ABD=90°,∠ABD+∠CBD=90°,第9页
共12页∴∠OAD=∠CBD,∴∠ODA=∠EBD,又∵∠ODA+∠ODB=90°,∴∠EBD+∠ODB=90°,即∠ODE=90°,∴DE是⊙O的切线.(2)答:△ABC的形状是等腰直角三角形.理由是:∵E、F分
别是BC、OC的中点,∴EF是三角形OBC的中位线,∴EF∥AB,DE⊥BC,OB=OD,四边形OBED是正方形,连接OE,OE是△ABC的中位线,OE∥AC,∠A=∠EOB=45度,∴∠A=∠ACB=45°,∵∠ABC=90°,∴
△ACB是等腰直角三角形.(3)设AD=x,CD=2x,∵∠CDB=∠CBA=90°,∠C=∠C,∴△CDB∽△CBA,∴=,∴=,x=2,AC=6,由勾股定理得:AB==6,∴圆的半径是3.答:⊙O的半径是3.6.解:第10页共
12页7.解:(1)证明:连接OC,∵OB=OC,∴∠OBC=∠OCB,∵PF⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∵FC=FD∴∠FCD=∠FDC∵∠FDC=∠BDP∴∠OCB+∠FCD=90°∴OC⊥FC∴FC是⊙O的切线.(2)如图2,
连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE
=OC∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;第11页共12页②若tan∠ABC=,且AB=20,求DE的长.∵=tan∠ABC=,设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k
)2+(4k)2=202,解得k=4,∴AC=12,BC=16,∵点E是的中点,∴OE⊥BC,BH=CH=8,∴OE×BH=OB×PE,即10×8=10PE,解得:PE=8,由勾股定理得OP===6,
∴BP=OB﹣OP=10﹣6=4,∵=tan∠ABC=,即DP=BP==3∴DE=PE﹣DP=8﹣3=5.8.解:第12页共12页