华东师大版八年级数学下册17.3一次函数教案

DOC
  • 阅读 17 次
  • 下载 0 次
  • 页数 6 页
  • 大小 52.500 KB
  • 2022-11-24 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
华东师大版八年级数学下册17.3一次函数教案
可在后台配置第一页与第二页中间广告代码
华东师大版八年级数学下册17.3一次函数教案
可在后台配置第二页与第三页中间广告代码
华东师大版八年级数学下册17.3一次函数教案
可在后台配置第三页与第四页中间广告代码
在线阅读已结束,您可下载此文档阅读剩下的3 已有0人下载 下载文档3.00 元
/ 6
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】华东师大版八年级数学下册17.3一次函数教案.doc,共(6)页,52.500 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-46684.html

以下为本文档部分文字说明:

17.3一次函数17.3.1.一次函数教学目标1.经历探索过程,发展学生的抽象思维能力.2.理解一次函敷和正比例函数的概念。3.能根据已知条件,写出简单的一次函数表达式,进一步发展学生的数学应用能力.教学过程一

、创设问题情境问题l:小明暑假第一次去北京,汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均速度是95千米/时.巳知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京

的距离.分析:我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值.显然,应该探究这两个量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是S=570-95t(1

)说明:找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s为因变量。问题2:小张准备将平时的零用钱节约一些储存起来,他已存有50元,从现在起每个月存12元。试

写出小张的存款数与从现在开始的月份数之间的函数关系式.分析:我们设从现在开始的月份数为x,小张的存款数为9元,得到所求函数关系式为y=__________(2)问题3:以上(1)与(2)表示的这两个函数有什么共同点?(上述(1)与(2)表示的函数解析式都是用自

变量的一次整式表示的)二、一次函数的定义函数的解析式都是用自变量的一次整式表示的,我们称它们为一次函数.一次函数通常可以表示为y=kx+b的形式,其中k、b是常数,k≠0。当b=0时,一次函数y=kx(常数

k≠0)也叫做正比例函数.正比例函数也是一次函数,它是一次函数的特例。三、范例例1.梯形的上下底边长分别为6cm和l0cm,写出梯形的面积与它的高之间的函数关系式,并问这是一次函数吗?是正比例函数吗?例2.写出多边形的内角和与它的边数之间的

函数关系式,利用这函数关系式求边数取多少时,其内角和等于900度?四、课堂练习P40页练习1、2以及P41页练习3。五、作业P47页习题18.32、3。六、教后记17.3.2一次函数的图象第一课时一次函数的图象(一)教

学目标1.经历一次函数的作图过程,能熟练地作出一次函数的图象.2.探索一次函数图象的特点以及某些一次函数图象的异同点,培养学生发现问题和解决问题的能力。教学过程一、复习1.作函数图象一般步骤是什么?2.在同个平面直角坐标系中画出下列函数的图象.(1)y=12x(

2)y=12x+2(3)y=3x(4)y=3x+2教学要点:要求学生按照列表、描点、连线的一般作图步骤作出函数图象;请两位同学板演;在学生互相评判的基础上教师加以评析.二、提出问题,解决问题问题l:以上四个一次函数图象是什么形状呢?让学生观察、讨论,得出四个函数的图象都是直线.问题

2:一次函数y=kx+b(k≠0)的图象都是一条直线吗?举例验证.让学生猜想,举例验证,发现一次函数y=kx+b(k≠0)的图象是一条直线。教师指出这条直线通常也称为直线y=kx+b(b≠0),特别地,正比例函数y=kx(k≠0)的图象是经过(0,0)的一条直线.问题3:几个点可以确定

一条直线?问题4:画一次函数图象时,只要取几个点?只要取两点。教师指出,今后画一次函数的图象,只要取两点再过两点画直线即可.问题5:观察“做一做”画出的四个函数的图象,如图所示,比较下列各对一次函数的图象有什么共同点,

有什么不同点.(1)y=3x与y=3x+2(2)y=12x与y=12x+2(3)y=3x+2与y=12x+2能否从中发现一些规律?让学生分组讨论、交流,教师引导观察,总结。问题6:对于直线y=kx+b(k、

b是常数,k≠0).常数k和b的取值对于直线的位置各有什么影响?让学生讨论,交流,发表意见,达成共识,然后填空:两个一次函数,当k一样,b不一样时,有共同点:__________________________不同点:____

_______________________当两个一次函数,b一样,k不一样时,有共同点:__________________________不同点:__________________________在同一

平面直角坐标系中画出下列函数的图象(画在课本直角坐标系上)。(1)y=2x与y=2x+3(2)y=2x+l与y=12x+1请同学们画出图象后,看看是否与上面的讨论结果一样.提问:你取的是哪几个点?和同学比较一下,怎

样取比较简便?通过比较,教师点拨,得出结论:一般情况下,要取直线与x,y轴的交点比较简便。三、课堂练习P42页练习l、2。四、小结1.一次函数的图象是什么形状呢?2.画一次函数图象时,只要取几个点?怎样取比较简便?3.两个一次函数

图象,当k一样,b不一样时,有什么共同点和不同点?当b一样,k不一样时,有什么共同点和不同点?五、作业P47页习题18.3第4、5题。六、教后记:第二课时一次函数的图象(二)教学目标1、使学生熟练的作出一次函数的图象。

2、探索一次函数作图过程。教学过程一、复习1.一次函数的图象是什么形状呢?2.正比例函数y=kx(k≠0)的图象是经过哪一点的一条直线?3.画一次函数图象时.只要取几点?4.在同一直角坐标系中画出下列函数的图象.并说出它

们有什么关系。y=4xy=4x+2二、范例例l:求直线y=-2x-3与x轴和y轴的交点.并画出这条直线.提问:平面直角坐标系中坐标轴上点的坐标有什么特征?让学生分组讨论、交流,发表意见,教师引导并归纳为x轴上

的点的坐标为(x,0),y轴上的点坐标(0,y)说明:1.画出直线后,要在直线旁边写出一次函数解析式。2.在坐标轴上取点有什么好处?例2,画出问题1中小明距北京的路程与开车时间t之间函数s=570-95t的图

象。提问:1.这里s和t取的数悬殊较大,怎么办?让学生分组讨论,然后发表意见,教师引导并归纳为:在实际问题中,我们可以在表示时间的t轴和表示路程的s轴上分别选取适当的单位长度,画出平面直角坐标系,如图所示.2.作图要取几点?如何取点最好?3.你能画出这个函数图象吗?试试看.

让学生动手画出函数s=570-95t的图象,教师巡视指导,及时纠正学生画图中可能出现的错误画法。画出这个函数图象后,讨论以下几个问题:1.这个函数是不是一次函数?2.这个函数中自变量t的取值范围是什么?函数的图象是什么?3.在实际问题中,一次函数的图象除了直线和本题的图形外,还有没有其他情形?

你能不能找出几个例子加以说明?对于以上第1和第2个问题,可让学生在讨论的基础上发表自己的看法,教师引导并归纳为:函数y=570-95t是一次函数,函数中自变量的取值范围是0≤t≤6,函数的图象是一条线段.对于

第3个问题,只要求各小组分别能举出一个例子在班上交流,培养学生编题能力和创新精神.三、课堂练习P44页练习l、2。四、小结1.在坐标轴上取点有什么好处?如何取点?2.在实际问题中,当自变量x和因变量y取的数较大,应如何选取直角坐标系的单位长度?3.在实际问题中,一次函数的图象都是直线吗?为什么?五

、作业P47页习题18.36、7.六、教后记:17.3.3.一次函数的性质教学目标1、探索一次函数图象观察、分析等过程,提高学生数形结合意识,培养数形结合的能力.2、掌握一次函数y=kx+b的性质。教学过程一、观察、分析一次函数图象特点1.画出一次函数y=23x+

1的图象.让学生动手画出一次函数,y=23x+l的图象,复习一次函数的怍图方法.教师在黑板上画出一次函数y=23x+1的图象。2.观察,分析函数y=23x+l图象的变化规律.师生共同观察分析,当一个点在直线上从左向右

移动(自变量x从小到大)时,它的位置也在逐渐从低到高变化(函数y的值也从小到大)问题2中的函数y=50+12x是否这样?这就是说,函数值y随自变量x增大而_______在同一直角坐标系中画出函数y=3x-2的图象(如图中的虚线)是否也有这种现象.进—步引导学生观察、分析

得出与上面相同的结论.3、画出函数y=-x+2和y=-32x-1的图象。学生动手画出以上一次函数图象,教师指导并纠正学生可能出现的错误画法.同时,教师在黑板面出这两个一次函数的图象.4、观察、分析函数y=-x+2和y=-32x-1图象的变化规律.问题l:仿照以上研究方法,研究它们是否也有相应

的性质,有什么不同?你能否发现什么规律?让学生分组讨论.发表意见,教师评析并归纳为:当一个点在直线上从左到右(自变量x从小到大)时它的位置也在逐渐从高到低变化(函数y的值也从大到小).其规律是函数值随自变量x的增大而减小.再联想问题1中的

函数y=570-95t,是否也有这样的规律,发表你的看法.让学生讨论回答,问题1中的函数y=570-95t也有与上面得出的同样规律。二、归纳、概括根据以上研究的结果,你能表述一次函数y=kx+b的性质吗?让学生归纳

、概括、表述如下性质:1.当k>0时,y随x的增大而增大,这时函数的图象从左到右上升;2.当k<0时,y随x的增大而减小,这时函数的图象从左到右下降.这些性质在P40问题1和P41问题2中,反映怎样的实际意义?让学生思考后回答.三、做一做画出函数y=-2x+2的图象,结合图象回答下

列问题:1.这个函数中,随着x的增大y将增大还是减小?它的图象从左到右怎样变化?2.当x取何值时,y=0?3.当x取何值时,y>0?四、课堂练习P45页练习l、2.五、小结:一次函数y=kx+b有哪些性质?六、作业P47页习题18.38、9(1)七、教后记:17.3.4求

一次函数的表达式教学目标1.使学生理解待定系数法。2.能用待定系数法术一次函数的解析式.教学过程一、范例已知弹簧的长度g(厘米)在一定的限度内是所挂重物质量x(千克)的一次函数.现己测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是

7.2厘米.求这个一次函数的关系式.分析:已知y与x的函数关系式是一次函数,则关系式必是y=kx+b的形式.所以要求的就是系数k和b的值,而两个已知条件就是x和y的两组对应值,也就是当x=6时,y=6;当x=4时,y=7.2

.可以分别将它们代入函数式,进而求得k和b的值.提问:1.确定一次函数的表达式需要几个条件?2.确定正比例函数的表达式需要几个条件?举例说明。待定系数法:先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程式方程组,求出未

知系数,从而得到所求结果的方法,叫做待定系数法。二、做一做已知一次函数y=kx+b的图象经过点(-1,1)和点(1,-5),求当x=5时,函数y的值。提问:1.这里的已知条件是否给出了x和y的对应值?2.题意并没有要求写出函数关系式,解题中

是否应该求出?该如何人手。让学生认真思考以上问题并回答。三、课堂练习:P46页练习l、2,阅读P48页内容。四、小结:1.什么叫做待定系数法?2.用待定系数法求正比例函数表达式需要几个条件?3.用待定系数法确定一次函数表达

式需要几个条件?五、作业:P47页习题18.38、9、10。六、教后记:

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 111
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?