沪科版七年级 数学下册 10.3 平行线的性质 教案设计

DOC
  • 阅读 62 次
  • 下载 0 次
  • 页数 3 页
  • 大小 133.500 KB
  • 2022-11-24 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
沪科版七年级 数学下册 10.3 平行线的性质 教案设计
可在后台配置第一页与第二页中间广告代码
沪科版七年级 数学下册 10.3 平行线的性质 教案设计
可在后台配置第二页与第三页中间广告代码
在线阅读已结束,您可下载此文档阅读剩下的1 已有0人下载 下载文档2.00 元
/ 3
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】沪科版七年级 数学下册 10.3 平行线的性质 教案设计.doc,共(3)页,133.500 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-46605.html

以下为本文档部分文字说明:

10.3平行线的性质1.理解平行线的性质;(重点)2.能运用平行线的性质进行推理证明.(重点、难点)一、情境导入窗户的内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、

∠2有什么数量关系?二、合作探究探究点一:两直线平行,同位角相等【类型一】运用平行线的性质1计算如图,已知直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数为()A.30°B.60°C.120°D.150°解析:根据两直线平行,同

位角相等求出∠3,再根据邻补角的定义解答.∵a∥b,∠1=60°,∴∠3=∠1=60°,∴∠2=180°-∠3=180°-60°=120°.故选C.【类型二】平行线判定方法与性质1的综合如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是()A.35°B.70°C.9

0°D.110°解析:由∠1=∠2,可根据同位角相等,两直线平行判断出a∥b,可得∠3=∠5,再根据邻补角互补可以计算出∠4的度数.∵∠1=∠2,∴a∥b,∴∠3=∠5.∵∠3=70°,∴∠5=70°,∴∠4=

180°-70°=110°,故选D.方法总结:此题主要考查了平行线的判定方法与性质1,关键是掌握平行线的判定定理与性质定理,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.探究点二:两直线平行,内错角相等如图,∠A=∠D,

如果∠B=20°,那么∠C为()A.40°B.20°C.60°D.70°解析:∵∠A=∠D,∴AB∥CD.∵AB∥CD,∠B=20°,∴∠C=∠B=20°,故选B.探究点三:两直线平行,同旁内角互补【类型一】运用平行线的性质3

计算如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠ABD的度数为()A.55°B.50°C.45°D.40°解析:首先根据平行线的性质可得∠ABC+∠DCB=180°,进而得到∠ABC的度数,再根据角平分线的性质可得答案.∵CD∥AB,∴∠ABC+∠DCB=18

0°(两直线平行,同旁内角互补).∵∠BCD=70°,∴∠ABC=180°-70°=110°.∵BD平分∠ABC,∴∠ABD=55°.故选A.方法总结:平行线是与角度大小紧密联系在一起的,由平行线能判断角度之间的大小关系;角平分线也是与角度大小联系在一起.在解题时要注

意将两者结合起来考虑.【类型二】平行线判定方法与性质3的综合如图,已知∠1=85°,∠2=95°,∠4=125°,则∠3的度数为()A.95°B.85°C.70°D.125°解析:根据对顶角相等得到∠5=∠1=85

°,由同旁内角互补,两直线平行得到a∥b,再根据两直线平行,同位角相等即可得到结论.如图,∵∠5=∠1=85°,∴∠5+∠2=85°+95°=180°,∴a∥b,∴∠3=∠4=125°.故选D.探究点四:平行线性质的运用

【类型一】平行线性质的实际运用一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=________度.解析:过B作BF∥AE,则CD∥BF∥AE.根据平行线的性质即可求解.过B作BF∥AE,则CD∥B

F∥AE.∴∠BCD+∠1=180°.又∵AB⊥AE,∴AB⊥BF,∴∠ABF=90°,∴∠ABC+∠BCD=90°+180°=270°.故答案为270.【类型二】平行线性质的探究应用如图,已知∠ABC.请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE交BC边与点P.探究:

∠ABC与∠DEF有怎样的数量关系?并说明理由.解析:先根据题意画出图形,再根据平行线的性质进行解答即可.解:∠ABC与∠DEF的数量关系是相等或互补.理由如下:如图①,因为DE∥AB,所以∠ABC=∠DPC,又因为EF∥BC,所以∠D

EF=∠DPC.所以∠ABC=∠DEF.如图②,因为DE∥AB,所以∠ABC+∠DPB=180°,又因为EF∥BC,所以∠DEF=∠DPB.所以∠ABC+∠DEF=180°.方法总结:画出满足条件的图形时,必须注意分情况讨论,即

把所有满足条件的图形都要作出来.【类型三】平行线性质与判定中的探究型问题已知:如图,AB∥CD,E,F分别是AB,CD之间的两点,且∠BAF=2∠EAF,∠CDF=2∠EDF.(1)判定∠BAE,∠CDE与∠AED之间的数量关系;(2)判定∠AFD

与∠AED之间的数量关系.解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)

可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=错误!∠AFD.方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便

迎刃而解.三、板书设计平行线的性质性质1:两条平行线被第三条直线所截,同位角相等;性质2:两条平行线被第三条直线所截,内错角相等;性质3:两条平行线被第三条直线所截,同旁内角互补.平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在

课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 112
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?