(通用版)中考数学总复习知识点梳理第12讲《二次函数的图象与性质》

DOC
  • 阅读 25 次
  • 下载 0 次
  • 页数 2 页
  • 大小 124.500 KB
  • 2022-11-23 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档1.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
(通用版)中考数学总复习知识点梳理第12讲《二次函数的图象与性质》
可在后台配置第一页与第二页中间广告代码
在线阅读已结束,您可下载此文档阅读剩下的1 已有0人下载 下载文档1.00 元
/ 2
  • 收藏
  • 违规举报
  • © 版权认领
下载文档1.00 元 加入VIP免费下载
文本内容

【文档说明】(通用版)中考数学总复习知识点梳理第12讲《二次函数的图象与性质》.doc,共(2)页,124.500 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-41586.html

以下为本文档部分文字说明:

第12讲二次函数的图象与性质一、知识清单梳理知识点一:二次函数的概念及解析式关键点拨与对应举例1.一次函数的定义形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.例:如果函数y=(a-1)x2是二次函数,那么a的取值范围是a≠0.2.解析式(1)三

种解析式:①一般式:y=ax2+bx+c;②顶点式:y=a(x-h)2+k(a≠0),其中二次函数的顶点坐标是(h,k);③交点式:y=a(x-x1)(x-x2),其中x1,x2为抛物线与x轴交点的横坐标.(2)待定系数法:巧设二次函数的解析式;根

据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.知识点二:二次函数的图象与性质3.二次函数

的图象和性质图象xyy=ax2+bx+c(a>0)Oxyy=ax2+bx+c(a<0)O(1)比较二次函数函数值大小的方法:①直接代入求值法;②性质法:当自变量在对称轴同侧时,根据函数的性质判断;当自变量在对称轴异侧时,可先利用函数的对称性转化到同侧,再利用性质比较;④

图象法:画出草图,描点后比较函数值大小.失分点警示(2)在自变量限定范围求二次函数的最值时,首先考虑对称轴是否在取值范围内,而不能盲目根据公式求解.例:当0≤x≤5时,抛物线y=x2+2x+7的最小值为7.开口向上向下对称轴x=2ba顶点坐标24,24bacbaa增减

性当x>2ba时,y随x的增大而增大;当x<2ba时,y随x的增大而减小.当x>2ba时,y随x的增大而减小;当x<2ba时,y随x的增大而增大.最值x=2ba,y最小=244acba.x=2ba,y最大=244a

cba.3.系数a、b、ca决定抛物线的开口方向及开口大小当a>0时,抛物线开口向上;当a<0时,抛物线开口向下.某些特殊形式代数式的符号:①a±b+c即为x=±1时,y的值;②4a±2b+c即为x=±2时,y的值.③2a+b的符号,需判断对称轴-b/2a与1的大小.若对称轴在直线

x=1的左边,则-b/2a>1,再根据a的符号即可得出结果.④2a-b的符号,需判断对称轴与-1的大小.a、b决定对称轴(x=-b/2a)的位置当a,b同号,-b/2a<0,对称轴在y轴左边;当b=0时,-b/2a=

0,对称轴为y轴;当a,b异号,-b/2a>0,对称轴在y轴右边.c决定抛物线与y轴的交点的位置当c>0时,抛物线与y轴的交点在正半轴上;当c=0时,抛物线经过原点;当c<0时,抛物线与y轴的交点在负半轴上.b2-4ac决定抛

物线与x轴的交点个数b2-4ac>0时,抛物线与x轴有2个交点;b2-4ac=0时,抛物线与x轴有1个交点;b2-4ac<0时,抛物线与x轴没有交点知识点三:二次函数的平移4.平移与解析式的关系平移|k|个单位平移|h|个单位向上(k>0)或向下(k<0)向左(h<0)或向右(h

>0)y=a(x-h)2+k的图象y=a(x-h)2的图象y=ax2的图象注意:二次函数的平移实质是顶点坐标的平移,因此只要找出原函数顶点的平移方式即可确定平移后的函数解析式失分点警示:抛物线平移规律是“上加下减,左加右减”,

左右平移易弄反.例:将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是y=(x-2)2.知识点四:二次函数与一元二次方程以及不等式5.二次函数与一元二次方程二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标

是一元二次方程ax2+bx+c=0的根.当Δ=b2-4ac>0,两个不相等的实数根;当Δ=b2-4ac=0,两个相等的实数根;当Δ=b2-4ac<0,无实根例:已经二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x

+m=0的两个实数根为2,1.6.二次函数与不等式抛物线y=ax2+bx+c=0在x轴上方的部分点的纵坐标都为正,所对应的x的所有值就是不等式ax2+bx+c>0的解集;在x轴下方的部分点的纵坐标均为负,所对应的x的值就是不等式ax2+

bx+c<0的解集.

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 112
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?