2021年人教版高中数学必修第二册第8章《8.1第1课时课时精讲》(含解析)

DOC
  • 阅读 47 次
  • 下载 0 次
  • 页数 11 页
  • 大小 490.500 KB
  • 2022-11-23 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
2021年人教版高中数学必修第二册第8章《8.1第1课时课时精讲》(含解析)
可在后台配置第一页与第二页中间广告代码
2021年人教版高中数学必修第二册第8章《8.1第1课时课时精讲》(含解析)
可在后台配置第二页与第三页中间广告代码
2021年人教版高中数学必修第二册第8章《8.1第1课时课时精讲》(含解析)
可在后台配置第三页与第四页中间广告代码
2021年人教版高中数学必修第二册第8章《8.1第1课时课时精讲》(含解析)
2021年人教版高中数学必修第二册第8章《8.1第1课时课时精讲》(含解析)
还剩5页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 11
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】2021年人教版高中数学必修第二册第8章《8.1第1课时课时精讲》(含解析).doc,共(11)页,490.500 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-39332.html

以下为本文档部分文字说明:

第1课时棱柱、棱锥、棱台的结构特征知识点一空间几何体的定义、分类及相关概念1.空间几何体的定义2.空间几何体的分类及相关概念知识点二棱柱的结构特征1.棱柱的定义、图形及相关概念2.棱柱的分类及特殊棱柱(1)按□06底

面多边形的边数,可以分为三棱柱、四棱柱、五棱柱„„(2)直棱柱:□07侧棱垂直于底面的棱柱.(3)斜棱柱:□08侧棱不垂直于底面的棱柱.(4)正棱柱:□09底面是正多边形的直棱柱.(5)平行六面体:□10底面是平行四边形的四棱柱.知识

点三棱锥的结构特征1.棱锥的定义、图形及相关概念2.棱锥的分类及特殊的棱锥(1)按□06底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥„„(2)正棱锥:□07底面是正多边形,并且顶点与底面中心的连线垂直于底面的

棱锥.知识点四棱台的结构特征1.棱台的定义、图形及相关概念2.棱台的分类(1)依据:□05由几棱锥截得.(2)举例:□06三棱台(由三棱锥截得)、四棱台(由四棱锥截得)„„1.几类特殊的四棱柱四棱柱是一种非常重要的棱柱

,平行六面体(底面是平行四边形的四棱柱)、直平行六面体(侧棱垂直于底面的平行六面体)、长方体、正四棱柱、正方体等都是一些特殊的四棱柱,它们之间的关系如下.2.棱柱、棱锥、棱台之间的关系棱柱、棱锥、棱台之间有着内在的联系:将棱台的上底面慢慢扩大到与下底面相同时,转化为棱柱;将棱台

的上底面慢慢缩小为一点时,转化为棱锥.如图所示.1.判一判(正确的打“√”,错误的打“×”)(1)棱柱的侧面可以不是平行四边形.()(2)各面都是三角形的多面体是三棱锥.()(3)棱台的上下底面互相平行,且各侧棱延长线相交于一点.()答案(1)×(2)×(3)√2.做一做(1)有两个面

平行的多面体不可能是()A.棱柱B.棱锥C.棱台D.以上都错(2)面数最少的多面体的面的个数是________.(3)三棱锥的四个面中可以作为底面的有________个.(4)四棱台有________个顶点,_

_______个面,________条边.答案(1)B(2)4(3)4(4)8612题型一对棱柱、棱锥、棱台概念的理解例1下列命题中,真命题有________.①棱柱的侧面都是平行四边形;②棱锥的侧面为

三角形,且所有侧面都有一个公共点;③棱台的侧面有的是平行四边形,有的是梯形;④棱台的侧棱所在直线均相交于同一点;⑤多面体至少有4个面.[解析]棱柱是由一个平面多边形沿某一方向平移而形成的几何体,因而侧面是平行四边形,故①正确.棱锥是由棱柱的一个底面收缩为一个点而得到的

几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故②正确.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故③错误,④正确.⑤显然正确.因而真命题有①②④⑤.[答案]①②

④⑤关于棱柱、棱锥、棱台结构特征问题的解题方法(1)根据几何体的结构特征的描述,结合棱柱、棱锥、棱台的定义进行判断,注意判断时要充分发挥空间想象能力,必要时做几何模型通过演示进行准确判断.(2)解决该类题目需准

确理解几何体的定义,要真正把握几何体的结构特征,并且学会通过举反例对概念类的命题进行辨析,即要说明一个命题是错误的,设法举出一个反例即可.下列关于棱锥、棱柱、棱台的说法:①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图形只能是三棱锥;③

棱锥被平面截成的两部分不可能都是棱锥;④棱柱的侧棱与底面一定垂直.其中正确说法的序号是________.答案①②解析①正确,棱台的侧面一定是梯形,而不是平行四边形;②正确,由四个平面围成的封闭图形只能是三棱锥;③错误,如图所示四棱锥被平面截成的两

部分都是棱锥;④错误,棱柱的侧棱与底面不一定垂直.题型二对棱柱、棱锥、棱台的识别与判断例2如图长方体ABCD-A1B1C1D1,(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF把这个长方体分成两部分,各部分的几何

体还是棱柱吗?[解](1)是棱柱.是四棱柱,因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.(2)截后的各部分都是棱柱,分别为棱柱BB1

F-CC1E和棱柱ABFA1-DCED1.[条件探究]若本例(2)中将平面BCEF改为平面ABC1D1,则分成的两部分各是什么体?解截后的两部分分别为棱柱ADD1-BCC1和棱柱AA1D1-BB1C1.棱柱判断的方法判断棱柱,依据棱柱的定义,先确定两个平行

的面——底面,再判断其余面——侧面是否为四边形及侧棱是否平行.判断下图甲、乙、丙所示的多面体是不是棱台?解根据棱台的定义,可以得到判断一个多面体是不是棱台的标准有两个:一是共点,二是平行,即各侧棱延长线要交于一

点,上、下两个底面要平行,二者缺一不可.据此,在图甲中多面体侧棱延长线不相交于同一点,不是棱台;图乙中多面体不是由棱锥截得的,不是棱台;图丙中多面体虽是由棱锥截得的,但截面与底面不平行,因此也不是棱台.题型三空间几何体的展开图问题例3如下图是三个几何体的侧面展开图,请问各是什么

几何体?[解]由几何体的侧面展开图的特点,结合棱柱、棱锥、棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以(1)为五棱柱,(2)为五棱锥,(3)为三棱台.空间几何体的展开图(1)解答空间几何体的展开图问题要

结合多面体的结构特征发挥空间想象能力和动手能力.(2)若给出多面体画其展开图,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.(3)若是给出表面展开图,则按上述过程逆推.根据如下图所给的平面图形,画出立体图.解将各平面

图折起来的空间图形如下图所示.1.下列说法中,正确的是()A.棱柱中所有的侧棱都相交于一点B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱相等,侧面是平行四边形答案D解析A选项不符合棱柱的

特点;B选项中,如图①,构造四棱柱ABCD-A1B1C1D1,令四边形ABCD是梯形,可知平面ABB1A1∥平面DCC1D1,但这两个面不能作为棱柱的底面;C选项中,如图②,底面ABCD可以是平行四边形;D选项是棱柱的

特点.故选D.2.下列三种叙述,正确的有()①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个

答案A解析本题考查棱台的结构特征.①中的平面不一定平行于底面,故①错误;②③可用如图的反例检验,故②③不正确.故选A.3.下列图形中,不是三棱柱展开图的是()答案C解析本题考查三棱柱展开图的形状.显然C无法将其折成三棱柱,故选C.4.①棱锥的各个侧面都是三角形;②有一个面是多边形,其余各面都是

三角形,由这些面围成的几何体是棱锥;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长相等.以上说法正确的序号有________.答案①③解析由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;有一个面是多边形,其余各面都是三角形,如果这些三角形没有一个公共顶点,那么这

个几何体就不是棱锥,故②错误;四面体就是由四个三角形所围成的几何体,因此四面体的任何一个面作底面的几何体都是三棱锥,故③正确;棱锥的侧棱长可以相等,也可以不相等,故④错误.5.已知M是棱长为2cm的正方体ABCD-A1B1C1D1的棱CC1的中点,求沿正方体表面

从点A到M的最短路程是多少?解若以BC或DC为轴展开,则A,M两点连成的线段所在的直角三角形的两条直角边的长度分别为2cm,3cm,故两点之间的距离为13cm,若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两条直角边的长度分别为1cm,4cm.故两点之间的距

离是17cm.故沿正方体表面从A到M的最短路程是13cm.

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 111
  • 被收藏 0
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?