【文档说明】2021年人教版高中数学必修第二册:《6.2.1向量的加法》教案.doc,共(4)页,289.000 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-39017.html
以下为本文档部分文字说明:
人教版本数学科目高一年级教学设计课题6.2.1平面向量的加法运算单元第六单元学科数学年级高一教材分析本节内容是平面向量的加法,由物理中的位移和力的合成导入,学习平面向量的加法法则以及加法的运算律这些知识点,为平面向量的减法做铺垫。教学目标与核心素养1.数
学抽象:利用位移和力的合成将平面向量具体化;2.逻辑推理:通过课堂探究逐步培养学生的逻辑思维能力.3.数学建模:掌握平面向量加法法则,利用向量的运算解决实际问题。4.直观想象:通过有向线段直观判断平面向量的加法运算;5.数学运算:能够正确计算和判断向量的加法
运算;6.数据分析:通过经历提出问题—推导过程—得出结论—例题讲解—练习巩固的过程,让学生认识到数学知识的逻辑性和严密性。重点平面向量的三角形法则、平行四边形法则、运算律。难点平面向量的三角形法则、平行四边形法则、运算律。教学过程教学环节教师活动学生活动设计意图导入新课情境导入:情景一:如图,
某人从A点走到B.然后从B点走到C.这个人所走过的位移是多少?向量的加法的定义:求两个向量和的运算叫做向量的加法情景二:如图,在光滑的平面上,一个物体同时受到两个外力1F与2F的作用,你能作出这个物体所受的合力F吗?��学生
思考问题,引出本节新课内容。设置问题情境,激发学生学习兴趣,并引出本节新课。讲授新课知识探究(一):向量加法的三角形法则向量加法的三角形法则(“作平移,首尾连,由起点指终点”)位移的合成可以看作向量加法的三角形法则的物理模型。向量加法的平行四边
形法则(“作平移,共起点,四边形,对角线”)力的合成可以看作向量加法的平行四边形法则的物理模型。知识探究(二):三角形法则与平行四边形法则的异同思考1:向量加法的平行四边形法则和三角形法则一致吗?为什么?不一致。三角形法则通过平移首尾相接,平行四边形法则通过平移起点相同。学生根据两个情境,探究
平面向量的加法法则。利用两个情境探究得出平面向量的加法法则,培养学生探索的精神.ab知识探究(二):非零共线向量的和的计算思考2:对于两个非零共线向量,能否求出他们的和向量?它们的加法与数的加法有什么关系?两个非零共线向量的和向量只需首
尾相接两个非零共线向量的加法和数的加法运算法则是一致的。知识探究(二):零向量与任一非零向量的和向量计算思考3:零向量与任一非零向量,能否求出他们的和向量?因为零向量的模为0,方向任意,根据合位移的计算方法可得,零向量与任一非零向
量的和等于该非零向量。知识探究(三):n个向量加法的三角形法则思考4:?CDBCABn个向量的和向量怎样计算?n个向量连加是将向量加法的三角形法则推广为n个向量相加的多边形法则:由第一个向量的起点指向最后一个向量的终
点的有向线段就表示这些向量的和.(注意:首尾相接)例题讲解(一)例1:如图,已知向量a、b,求作向量a+b.作法1:三角形法则OABab+OB=作法2:平行四边形法则OABCab+OC=知识探究(四):向量和与向量的模的关系思考:当向量ab、不共线时,和向量
的长度||ab与向量ab、的长度和||||ab之间的大小关系如何?学生根据环环相扣的思考题,探究平面向量的运算律。学生例题,巩固向量的加法法则以及运算律,并能够灵通过思考,培养学生探索新知的精神和能力.利用数形
结合的思想,化抽象为具体,提高学生的抽象能力和逻||||||abab知识探究(五):平面向量加法的运算律思考1:数的加法满足交换律、结合律,向量的加法是否也满足交换律和结合律?向量的加法交换律abab向量的加法结合律()
abcabc(+)+例题讲解:平面向量的加法运算例2长江两岸之间没有大桥的地方,常常通过进行轮渡运输。如图所示,一艘船从长江南岸A地出发,垂直于对岸航行,航行速度的大小为15千米每小时,同时江水
的速度为向东6千米每小时。(1)用向量表示江水速度、船速以及船实际航行的速度;(2)求船实际航行的速度的大小(结果保留小数点后一位)与方向(用与江水速度间的夹角表示,精确到1度)。ABDC表示江水速
度表示船速,如右图所示,解:ABAD1ABCDABAD为邻边作平行四边形以,表示船实际航行的速度则AC15,62BCABABCRt中,在2.162611562222BCABAC于是
。所以利用计算工具可得因为6825tanCABABBCCAB。角约为方向与江水速度间的夹,大小约为因此,船实际航行速度68/2.16hkm提升训练1、求下列向量的和活运用.学生和教师共同探究完成3个练习题。辑思维能力。通过这3个题,巩固基础知识,发散学生思维,培养学生思维
的严谨性和对数学的探索精神。(1)_________ABBCCD(2)_________ABCDBCDE(3)_________ABBCDEEFCDADAEAF3、如图,O为正六边形A1A2A3A4A5A6的中心,求出下
列向量的和:(1)13OAOA2OA(2)365OAAA64AA(3)2365AAAA14AA(4)436431AAAAAA16AA(5)1223344556AAAAAAAAAA16
AA=++++)6(1654433221AAAAAAAAAA0课堂小结1.向量的三角形法则2.向量的平行四边形法则3.向量加法的运算律学生回顾本节课知识点,教师补充。让学生掌握本节课知识点,并能够灵活运用。板书§6.2.1平面向量的加法运算一、情境导入2.平行四边形法则三、课堂小结二、探索
新知3.向量加法运算律四、作业布置1.三角形法则例1、2、教学反思