【文档说明】2021年人教版高中数学必修第一册课时同步练习38《同角三角函数的基本关系》(含答案详解).doc,共(6)页,66.000 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-38251.html
以下为本文档部分文字说明:
1课时同步练习(三十八)同角三角函数的基本关系(建议用时:60分钟)[合格基础练]一、选择题1.已知α是第三象限角,且sinα=-13,则3cosα+4tanα=()A.-2B.2C.-3D.3A[因为α是第三象限角,且sinα=-13,所以c
osα=-1-sin2α=-1--132=-223,所以tanα=sinαcosα=122=24,所以3cosα+4tanα=-22+2=-2.]2.化简sin2α+cos4α+sin2αcos2α的结果是()A.14B.12C.1D.32C[原式=sin2α+cos2α(cos2α
+sin2α)=sin2α+cos2α=1.]3.已知sinα=55,则sin4α-cos4α的值为()A.-15B.-35C.15D.35B[sin4α-cos4α=(sin2α+cos2α)(sin2α-cos2α)=sin2α-co
s2α=2sin2α-1=-35.]4.tanx+1tanxcos2x等于()2A.tanxB.sinxC.cosxD.1tanxD[原式=sinxcosx+cosxsinx·cos2x=
sin2x+cos2xsinxcosx·cos2x=1sinxcosx·cos2x=cosxsinx=1tanx.]5.已知sinθ+cosθ=430<θ≤π4,则sinθ-cosθ=()A.23B.-23C.1
3D.-13B[由(sinθ+cosθ)2=1+2sinθcosθ=169,得2sinθcosθ=79,则(sinθ-cosθ)2=1-2sinθcosθ=29,由0<θ≤π4,知sinθ-cosθ≤0,所以sinθ-cosθ=-23.]二、填空题6.化简11+t
an220°的结果是________.cos20°[11+tan220°=11+sin220°cos220°=1cos220°+sin220°cos220°=11cos220°=|cos20°|=cos20°.]7.已知cosα+2sinα=-5,则tanα=________.2[由cos
α+2sinα=-5,sin2α+cos2α=1,得(5sinα+2)2=0,∴sinα=-255,cosα=-55,∴tanα=2.]38.已知tanα=2,则4sin2α-3sinαcosα-5cos2α=________.1[4sin2α-
3sinαcosα-5cos2α=4sin2α-3sinαcosα-5cos2αsin2α+cos2α=4tan2α-3tanα-5tan2α+1=4×4-3×2-54+1=55=1.]三、解答题9.化简下列各式:(1)sinα1+sinα-sinα1-sinα;(2)1si
nα+1tanα(1-cosα).[解](1)原式=sinα1-sinα-sinα1+sinα1+sinα1-sinα=-2sin2α1-sin2α=-2sin2αcos2α=-2tan2α.(2)原式
=1sinα+cosαsinα(1-cosα)=1+cosαsinα(1-cosα)=sin2αsinα=sinα.10.若3π2<α<2π,求证:1-cosα1+cosα+1+cosα1-co
sα=-2sinα.[证明]∵3π2<α<2π,∴sinα<0.左边=1-cosα21+cosα1-cosα+1+cosα21-cosα1+cosα=1-cosα2sin2α+1+cosα2sin2α=|1-cosα||sinα|+|1+
cosα||sinα|=-1-cosαsinα-1+cosαsinα4=-2sinα=右边.∴原等式成立.[等级过关练]1.在△ABC中,2sinA=3cosA,则角A=()A.π6B.π4C.π3D.π2C[由题意知cosA
>0,即A为锐角.将2sinA=3cosA两边平方得2sin2A=3cosA,∴2cos2A+3cosA-2=0,解得cosA=12或cosA=-2(舍去).∴A=π3.]2.1-2sin10°cos10°sin10°-1-sin210°的值为()A.1B.-1C.sin10°D.cos10°
B[1-2sin10°cos10°sin10°-1-sin210°=cos10°-sin10°2sin10°-cos210°=|cos10°-sin10°|sin10°-cos10°=cos10°-sin10°sin10°-cos10°=-1.]3.
已知sinθ=m-3m+5,cosθ=4-2mm+5,则m的值为________.0或8[因为sin2θ+cos2θ=1,所以m-3m+52+4-2mm+52=1.整理得m2-8m=0,解得m=0或8.]4.已
知sinθ,cosθ是方程2x2-mx+1=0的两根,则sinθ1-1tanθ+cosθ1-tanθ=5________.±2[sinθ1-1tanθ+cosθ1-tanθ=sinθ1-cosθsinθ+cosθ1-sinθc
osθ=sin2θsinθ-cosθ+cos2θcosθ-sinθ=sin2θ-cos2θsinθ-cosθ=sinθ+cosθ,又因为sinθ,cosθ是方程2x2-mx+1=0的两根,所以由根与系数的关系得sinθcosθ=12,则(sinθ+cosθ)2=1+2sinθcosθ=2,所以si
nθ+cosθ=±2.]5.求证:1-2sin2xcos2xcos22x-sin22x=1-tan720°+2x1+tan360°+2x.[证明]法一:右边=1-tan2x1+tan2x=1-sin2xcos2x1+sin2xcos2x=cos2x
-sin2xcos2x+sin2x=cos2x-sin2x2cos2x+sin2xcos2x-sin2x=cos22x+sin22x-2cos2xsin2xcos22x-sin22x=1-2sin2xcos2xcos22x-si
n22x=左边.所以原等式成立.法二:左边=sin22x+cos22x-2sin2xcos2xcos22x-sin22x=cos2x-sin2x2cos2x-sin2xcos2x+sin2x=cos2x-sin2xcos2x+sin2x.右边=
1-tan2x1+tan2x=1-sin2xcos2x1+sin2xcos2x=cos2x-sin2xcos2x+sin2x.6所以原等式成立.