【文档说明】2021年人教版高中数学必修第一册章末综合测评(五)《三角函数》(含答案详解).doc,共(10)页,145.500 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-38204.html
以下为本文档部分文字说明:
1章末综合测评(五)三角函数(满分:150分时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合M={x|x=45°+k·90°,k∈Z},N={x|x=90°+k·45°,k∈Z},
则()A.M=NB.MNC.MND.M∩N=∅C[M={x|x=45°+k·90°,k∈Z}={x|x=(2k+1)·45°,k∈Z},N={x|x=90°+k·45°,k∈Z}={x|x=(k+2)·45°,k∈Z}.因为k∈Z,所以k+2∈Z,且2k+1为奇数,所以MN,故选C.
]2.cos275°+cos215°+cos75°cos15°的值等于()A.62B.32C.54D.1+34C[∵cos75°=sin15°,∴原式=sin215°+cos215°+sin15°cos15°=1+12sin30°=1+12×12=54.]3.化简cos2
π4-α-sin2π4-α得()A.sin2αB.-sin2αC.cos2αD.-cos2αA[原式=cos2π4-α=cosπ2-2α=sin2α.]4.已知tan(α+β)=3,tan(α-β)=5,则tan2α的
值为()A.-47B.472C.18D.-18A[tan2α=tan[(α+β)+(α-β)]=tanα+β+tanα-β1-tanα+βtanα-β=3+51-3×5=-47.]5.已知sin(α-β)cosα-cos(α-β)sinα=45,且β在第三象限
,则cosβ2的值等于()A.±55B.±255C.-55D.-255A[由已知,得sin[(α-β)-α]=sin(-β)=45,得sinβ=-45.∵β在第三象限,∴cosβ=-35,∴cosβ2=±1+cosβ2=±15=±55.]6.函数y=2sin2x+π3的
图象()A.关于原点对称B.关于点-π6,0对称C.关于y轴对称D.关于直线x=π6对称B[因为当x=0时,y=2sinπ3=3,当x=π6时,y=2sin2π3=3,当x=-π6时,y=2sin0=0.所以A、C、D错误,B正确.]7.若函数f(x)=s
in(ωx+φ)的图象(部分)如图所示,则ω和φ的取值是()3A.ω=1,φ=π3B.ω=1,φ=-π3C.ω=12,φ=π6D.ω=12,φ=-π6C[由图象知,T=42π3+π3=4π=2πω,∴ω=12.又当x=2π3
时,y=1,∴sin12×2π3+φ=1,π3+φ=2kπ+π2,k∈Z,当k=0时,φ=π6.]8.已知cosα+2π3=45,-π2<α<0,则sinα+π3+sinα等于()A.-435B.-335C.335D.435A[sin
α+π3+sinα=32sinα+32cosα=3sinα+π6=3sinα+2π3-π2=-3cosα+2π3=-3×45=-435.]9.已知sinα+cosα=23,α∈(0,π),则sinα+π12的值为()A.3+226B.3-226C.1
+266D.1-266A[∵sinα+cosα=2sinα+π4=23,∴sinα+π4=13,∵α∈(0,π),∴α+π4∈π4,5π4,4又∵sinα+π4=13,∴α+π4∈3π4,
π,∴cosα+π4=-1-sin2α+π4=-223.sinα+π12=sinα+π4-π6=sinα+π4cosπ6-cosα+π4s
inπ6=13×32--223×12=22+36.]10.已知tanα和tanπ4-α是方程ax2+bx+c=0的两根,则a,b,c的关系是()A.b=a+cB.2b=a+cC.c=a+bD.c
=abC[由根与系数的关系得:tanα+tanπ4-α=-ba,tanαtanπ4-α=ca,tanα+π4-α=tanα+tanπ4-α1-tanαtanπ4-α=-ba1-c
a=1,得c=a+b.]11.函数f(x)=Asinωx(ω>0),对任意x有fx-12=fx+12,且f-14=-a,那么f94等于()A.aB.2aC.3aD.4
aA[由fx-12=fx+12,5得f(x+1)=fx+12+12=fx+12-12=f(x),即1是f(x)的周期.而f(x)为奇函数,则f
94=f14=-f-14=a.]12.甲、乙两人从直径为2r的圆形水池的一条直径的两端同时按逆时针方向沿水池做匀速圆周运动,已知甲的速度是乙的速度的两倍,乙绕水池一周停止运动,若用θ表示
乙在某时刻旋转角的弧度数,l表示甲、乙两人的直线距离,则l=f(θ)的大致图象是()B[由题意知θ=π时,两人相遇排除A,C,两人的直线距离大于等于零,排除D,故选B.]二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题
中的横线上)13.已知tanα=-3,π2<α<π,那么cosα-sinα的值是________.-1+32[因为tanα=-3,π2<α<π,所以α=2π3,所以cosα=-12,sinα=32,cosα-sinα=-1+32
.]14.设α是第二象限角,P(x,4)为其终边上一点,且cosα=x5,则tan2α=________.6247[因为α是第二象限角,P(x,4)为其终边上的一点,所以x<0,因为cosα=x5=x
x2+16,所以x=-3,所以tanα=yx=-43,所以tan2α=2tanα1-tan2α=247.]15.已知α满足sinα=13,那么cosπ4+αcosπ4-α的值为________.718[∵cosπ4
+α=cosπ2-π4-α=sinπ4-α,∴cosπ4+αcosπ4-α=sinπ4-αcosπ4-α=12sinπ2-2α=12cos2α=12(1-2sin2α)=121-2×
132=718.]16.关于函数f(x)=cos2x-π3+cos2x+π6,有下列说法:①y=f(x)的最大值为2;②y=f(x)是以π为最小正周期的周期函数;③y=f(x)在区间π2
4,13π24上单调递减;④将函数y=2cos2x的图象向左平移π24个单位后,将与已知函数的图象重合.其中正确说法的序号是________.(把你认为正确的说法的序号都填上)①②③[∵f(x)=cos
2x-π3+cos2x+π2-π3=cos2x-π3-sin2x-π3=2cos2x-π12,∴f(x)max=2,即①正确.T=2π|ω|=2π2=π,即②正确.7f(x)的递减区间为2kπ≤2x-
π12≤2kπ+π(k∈Z),即kπ+π24≤x≤kπ+13π24(k∈Z),k=0时,π24≤x≤13π24,即③正确.将函数y=2cos2x向左平移π24个单位得y=2cos2x+π24≠f(x),所以④不正确.]三、解答题(本大题共6小题,共70分.解答应写出文字说
明,证明过程或演算步骤)17.(本小题满分10分)已知cos(π+α)=-12,且角α在第四象限,计算:(1)sin(2π-α);(2)sin[α+2n+1π]+sinπ+αsinπ-α·cosα+2nπ(n∈Z).[解]因为cos(π+α)=-12
,所以-cosα=-12,cosα=12.又角α在第四象限,所以sinα=-1-cos2α=-32.(1)sin(2π-α)=sin[2π+(-α)]=sin(-α)=-sinα=32.(2)sin[α+2n+1π]+sinπ+αsinπ-α·cosα+
2nπ=sinα+2nπ+π-sinαsinαcosα=sinπ+α-sinαsinαcosα=-2sinαsinαcosα=-2cosα=-4.18.(本小题满分12分)已知α,β为锐角,sinα
=17,cos(α+β)=35.8(1)求sinα+π6的值;(2)求cosβ的值.[解](1)∵α为锐角,sinα=17,∴cosα=1-sin2α=437,∴sinα+π6=sinαcosπ6+cosαsinπ6=17×32+437×12=5314.(2)∵α,β
为锐角,∴α+β∈(0,π),由cos(α+β)=35得,sin(α+β)=1-cos2α+β=45,∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=35×437+45×17=
4+12335.19.(本小题满分12分)已知f(x)=sin2x+π6+32,x∈R.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?[解](1)T=2π2=π,由2kπ-π2≤2x+π6≤2kπ
+π2(k∈Z),知kπ-π3≤x≤kπ+π6(k∈Z).所以所求函数的最小正周期为π,所求的函数的单调递增区间为kπ-π3,kπ+π6(k∈Z).(2)变换情况如下:y=sin2x―――――――――
―――→向左平移π12个单位长度y=sin2x+π12―――――――――――→将图象上各点向上平移32个单位长度9y=sin2x+π6+32.20.(本小题满分12分)已知函数f(x)=2cos2x-π4,x∈R
.(1)求函数f(x)的最小正周期和单调递增区间;(2)求函数f(x)在区间-π8,π2上的最小值和最大值,并求出取得最值时x的值.[解](1)因为f(x)=2cos2x-π4,所以函数f(x)的最小正周期为T=2π2=π.由-π+2kπ≤2x-π4≤2kπ(k
∈Z),得-3π8+kπ≤x≤π8+kπ(k∈Z),故函数f(x)的单调递增区间为-3π8+kπ,π8+kπ(k∈Z).(2)因为f(x)=2cos2x-π4在区间-π8,π8上为增函数,在区间π8,π2上为减函数,又f
-π8=0,fπ8=2,fπ2=2cosπ-π4=-2cosπ4=-1,所以函数f(x)在区间-π8,π2上的最大值为2,此时x=π8;最小值为-1,此时x=π2.21.(本小题
满分12分)已知△ABC的三个内角分别为A,B,C,且满足sin2(A+C)=3sinBcosB,cos(C-A)=-2cos2A.(1)试判断△ABC的形状;(2)已知函数f(x)=sinx-3cosx(x∈R),求f(A+45°)的值.[解](
1)∵sin2(A+C)=3sinBcosB,∴sin2B=3sinBcosB,∵sinB≠0,∴sinB=3cosB,∴tanB=3,∵0°<B<180°,∴B=60°,又cos(C-A)=-2cos2A,得cos(120°
-2A)=-2cos2A,10化简得sin2A=-3cos2A,解得tan2A=-3,又0°<A<120°,∴0°<2A<240°,∴2A=120°,∴A=60°,∴C=60°,∴△ABC为等边三角形.(2)∵f(x)=
sinx-3cosx=212sinx-32cosx=2(sinxcos60°-cosxsin60°)=2sin(x-60°),∴f(A+45°)=2sin45°=2.22.(本小题满分12分)如图,矩形ABC
D的长AD=23,宽AB=1,A,D两点分别在x,y轴的正半轴上移动,B,C两点在第一象限,求OB2的最大值.[解]过点B作BH⊥OA,垂足为H.设∠OAD=θ0<θ<π2,则∠BAH=π2-θ,OA=23cosθ,BH=sinπ2-θ=cosθ,AH=co
sπ2-θ=sinθ,∴B(23cosθ+sinθ,cosθ),OB2=(23cosθ+sinθ)2+cos2θ=7+6cos2θ+23sin2θ=7+43sin2θ+π3.由0<θ<π2,知π3<2θ+π3<4π3,所以当θ=π12时,OB2取得最大值7+43.