【文档说明】中考数学二轮复习专题提升卷12《与圆的切线有关的计算与证明》(教师版) (NXPowerLite).doc,共(6)页,136.000 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-35228.html
以下为本文档部分文字说明:
专题提升(十二)与圆的切线有关的计算与证明类型之一与切线的性质有关的计算或证明【经典母题】如图,⊙O的切线PC交直径AB的延长线于点P,C为切点,若∠P=30°,⊙O的半径为1,则PB的长为__1__.【解析】如答图,连结OC.∵PC为⊙
O的切线,∴∠PCO=90°,在Rt△OCP中,∵OC=1,∠P=30°,∴OP=2OC=2,∴PB=OP-OB=2-1=1.【思想方法】(1)已知圆的切线,可得切线垂直于过切点的半径;(2)已知圆的切线,常作过切点的半径,得到切线与半径垂直.
【中考变形】已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.(1)如图①,求∠T和∠CDB的大小;(2)如图②,当BE=BC时,求∠CDO的大小.解:(1)如答图①,连结AC,∵AT是⊙O的切线,AB是⊙O的直径,∴AT⊥A
B,即∠TAB=90°,∵∠ABT=50°,∴∠T=90°-∠ABT=40°,由AB是⊙O的直径,得∠ACB=90°,∴∠CAB=90°-∠ABC=40°,∴∠CDB=∠CAB=40°;(2)如答图②,连结AD,在△BCE中
,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°,∵OA=OD,∴∠ODA=∠OAD=65°,∵∠ADC=∠ABC=50°,∴∠CDO=∠ODA-∠ADC=65°-50°=15°.【中考预测】如图,AB与⊙O相切于点B,BC为⊙O的弦,OC⊥OA
,OA与BC相交于点P.(1)求证:AP=AB;(2)若OB=4,AB=3,求线段BP的长.解:(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵AB是⊙O的切线,∴OB⊥AB,∴∠OBA=90°,∴∠ABP+∠OBC=90°,∵OC⊥AO,∴∠AOC=
90°,∴∠OCB+∠CPO=90°,∵∠APB=∠CPO,∴∠APB=∠ABP,∴AP=AB;(2)如答图,作OH⊥BC于H.在Rt△OAB中,∵OB=4,AB=3,∴OA=32+42=5,∵AP=AB=3,∴PO=2.
在Rt△POC中,PC=OC2+OP2=25,∵12PC·OH=12OC·OP,∴OH=OP·OCPC=455,∴CH=OC2-OH2=855,∵OH⊥BC,∴CH=BH,∴BC=2CH=1655,∴BP=BC-P
C=1655-25=655.类型之二与切线的判定有关的计算或证明【经典母题】已知:如图,A是⊙O外一点,AO的延长线交⊙O于点C,点B在圆上,且AB=BC,∠A=30°,求证:直线AB是⊙O的切线.证明:如答图,连结OB,∵OB=OC,AB=BC,∠A=30°
,∴∠OBC=∠C=∠A=30°,∴∠AOB=∠C+∠OBC=60°.∵∠ABO=180°-(∠AOB+∠A)=180°-(60°+30°)=90°,∴AB⊥OB,又∵OB为⊙O半径,∴AB是⊙O的切线
.【思想方法】证明圆的切线常用两种方法“作半径,证垂直”或者“作垂直,证半径”.【中考变形】1.如图5,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证
:直线CD是⊙O的切线.解:(1)∵AB是⊙O直径,C在⊙O上,∴∠ACB=90°,又∵BC=3,AB=5,∴由勾股定理,得AC=4;(2)证明:如答图,连结OC,∵AC是∠DAB的平分线,∴∠DAC=∠BAC,又∵AD⊥DC,
∴∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴∠DCA=∠CBA,又∵OA=OC,∴∠OAC=∠OCA,∵∠OAC+∠OBC=90°,∴∠OCA+∠ACD=∠OCD=90°,∴直线CD是⊙O的切线.2.如图,在Rt△ACB中,∠A
CB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连结DE并延长交AC的延长线点F.(1)求证:DE是⊙O的切线;(2)若CF=2,DF=4,求⊙O直径的长.【解析】(1)连结OD,欲证DE是⊙O的切线,需证OD⊥DE,即需证∠OD
E=90°,而∠ACB=90°,连结CD,根据“等边对等角”可知∠ODE=∠OCE=90°,从而得证;(2)在Rt△ODF中,利用勾股定理建立关于半径的方程求解.解:(1)证明:如答图,连结OD,CD.∵AC是⊙O的直径,∴∠ADC=90°.∴∠BDC=
90°.又∵E为BC的中点,∴DE=12BC=CE,∴∠EDC=∠ECD.∵OD=OC,∴∠ODC=∠OCD.∴∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°.∴∠ODE=90°,∴DE是⊙O的切线;(2)设⊙O的半径
为x.在Rt△ODF中,OD2+DF2=OF2,即x2+42=(x+2)2,解得x=3.∴⊙O的直径为6.【中考预测】如图,AB是⊙O的直径,点C,D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC.(1)求证:DE与⊙O相切;(
2)若BF=2,DF=10,求⊙O的半径.解:(1)证明:如答图,连结OD.∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵∠BOD=2∠BCD,∠A=2∠BCD,∴∠BOD=∠A,∵∠AED=∠ABC,∴∠BOD
+∠AED=90°,∴∠ODE=90°,即OD⊥DE,∴DE与⊙O相切;(2)如答图,连结BD,过点D作DH⊥BF于点H.∵DE与⊙O相切,∴∠ACD+∠BCD=∠ODB+∠BDE=90°,∵∠ACD=∠OB
D,∠OBD=∠ODB,∴∠BDE=∠BCD,∵∠AED=∠ABC,∴∠AFC=∠DBF,∵∠AFC=∠DFB,∴△ACF与△FDB都是等腰三角形,∴FH=BH=12BF=1,∴HD=DF2-FH2=3,在Rt△ODH中,OH2+DH2=OD2,即(O
D-1)2+32=OD2,∴OD=5.即⊙O的半径是5.