【文档说明】高考数学(文数)一轮复习课件 第九章 概率 第一节 随机事件的概率(含详解).ppt,共(26)页,547.000 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-33650.html
以下为本文档部分文字说明:
1.事件的相关概念第一节随机事件的概率2.频数、频率和概率(1)频数、频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的为事件A出现的频数,称事件A出现的比例fn(A)=_
__为事件A出现的频率.(2)概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作,称为事件A的概率.次数nAnAnP(A)3.事件的关系与运算名称条件结论符号表示包含关系A发生⇒B发生事件B事件A
(事件A事件B)B⊇A(或A⊆B)相等关系若_______事件A与事件B相等A=B并(和)事件A发生或B发生事件A与事件B的并事件(或和事件)_________________包含包含于B⊇A且A⊇BA∪B(或A+B)名称条件结论符号表示交(积)事件A发生且B发生事件A与事件B
的交事件(或积事件)_______________互斥事件A∩B为事件事件A与事件B互斥A∩B=∅对立事件A∩B为事件,A∪B为必然事件事件A与事件B互为对立事件A∩B=∅,P(A∪B)=1不可能不可能A∩B
(或AB)4.概率的几个基本性质(1)概率的取值范围:.(2)必然事件的概率为.(3)不可能事件的概率为.(4)概率的加法公式:如果事件A与事件B互斥,则P(A∪B)=.(5)对立事件的概率:若事件A与事件B互为对立事件,则A∪B为必然事件,P(A∪B)=,P(A)=
.0≤P(A)≤110P(A)+P(B)11-P(B)[小题体验]1.(教材习题改编)某人进行打靶练习,共射击10次,其中有2次中10环,有3次中9环,有4次中8环,有1次未中靶.假设此人射击1次,则其中靶的概率约为____________;中10环的概率约为________.解析:中靶的频数为9
,试验次数为10,所以中靶的频率为910=0.9,所以此人射击1次,中靶的概率约为0.9.同理得中10环的概率约为0.2.答案:0.90.22.(教材习题改编)如果从不包括大、小王的52张扑克牌中随机抽取一张,那么取到红心的概率是14,取到方块的概率是14,则取到黑色牌的概率是________
.答案:123.(教材习题改编)给出下列三个命题,其中正确命题有______个.①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③随机事件发生的频率就是这个随机事件
发生的概率.解析:①错,不一定是10件次品;②错,37是频率而非概率;③错,频率不等于概率,这是两个不同的概念.答案:01.易将概率与频率混淆,频率随着试验次数变化而变化,而概率是一个常数.2.互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一
个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.[小题纠偏]1.甲:A1,A2是互斥事件;乙:A1,A2是对立事件,那么()A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件
C.甲是乙的充要条件D.甲既不是乙的充分条件,也不是乙的必要条件解析:两个事件是对立事件,则它们一定互斥,反之不一定成立.答案:B2.在运动会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬手的编号相连的概率为()A.31
0B.58C.710D.25解析:从1,2,3,4,5中任取三个数的结果有10种,其中选出的火炬手的编号相连的事件有:(1,2,3),(2,3,4),(3,4,5),∴选出的火炬手的编号相连的概率为P=310.答案:A
考点一随机事件的关系[题组练透]1.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶解析:事件“至少有一次中靶”包括“中靶一次”和
“中靶两次”两种情况.由互斥事件的定义,可知“两次都不中靶”与之互斥.答案:D2.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是()A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D
.至少有一张移动卡解析:至多有一张移动卡包含“一张移动卡,一张联通卡”、“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,故选A.答案:A3.对飞机连续射击两次,每次发射一枚炮弹,设A={两次
都击中飞机},B={两次都没击中飞机},C={恰有一次击中飞机},D={至少有一次击中飞机},其中彼此互斥的事件是________,互为对立事件的是________.解析:设I为对飞机连续射击两次所发生的所有情况,因为A∩B=∅,A∩C=∅,B∩C=∅,B∩D=∅,故A与B,A与C
,B与C,B与D为互斥事件.而B∩D=∅,B∪D=I,故B与D互为对立事件.答案:A与B,A与C,B与C,B与DB与D[谨记通法]判断互斥、对立事件的2种方法(1)定义法判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,
对立事件一定是互斥事件.(2)集合法①由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.②事件A的对立事件A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.考点二随机事件的频率与概率[题组练透]1.在投掷一枚硬币的试验中,共投掷了10
0次,“正面朝上”的频数为51,则“正面朝上”的频率为()A.49B.0.5C.0.51D.0.49解析:由题意,根据事件发生的频率的定义可知,“正面朝上”的频率为51100=0.51.答案:C2.(2015·北
京高考)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“”表示购买,“”表示未购买.商品顾客人数甲乙丙丁1002172003008598(1)估计顾客
同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解:(1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率
可以估计为2001000=0.2.(2)从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001000=0.3.(3)与(1)同理,
可得:顾客同时购买甲和乙的概率可以估计为2001000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001000=0.6,顾客同时购买甲和丁的概率可以估计为1001000=0.1,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.[谨记通法]
1.概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.2.随机事件概率的求法利用概率的统计定义求事件
的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.[提醒]概率的定义是求一个事件概率的基本方法.考点三互斥事件与对立事件的概率[典例引领]某战士射击一次,问:(1)若中靶的概率为0.95,则不中靶的概率为多少?(2)若命中1
0环的概率是0.27,命中9环的概率为0.21,命中8环的概率为0.24,则至少命中8环的概率为多少?不够9环的概率为多少?解:(1)设中靶为事件A,则不中靶为A.则由对立事件的概率公式可得,P(A)=1-
P(A)=1-0.95=0.05.即不中靶的概率为0.05.(2)设命中10环为事件B,命中9环为事件C,命中8环为事件D,由题意知P(B)=0.27,P(C)=0.21,P(D)=0.24.记至少命中8环为事件E,则P(E)=
P(B+C+D)=P(B)+P(C)+P(D)=0.27+0.21+0.24=0.72.故至少命中8环的概率为0.72.记至少命中9环为事件F,则不够9环为F,则P(F)=P(B+C)=P(B)+P(C)=0.27+0.21=0.48.则P(F)=1-P(F)=1-0.48=0.52.即不够9环
的概率为0.52.[由题悟法]求复杂互斥事件概率的2种方法(1)直接求法:将所求事件分解为一些彼此互斥的事件的和,运用互斥事件概率的加法公式计算.(2)间接求法:先求此事件的对立事件,再用公式P(A)=1-P(A)求得,即运用逆向思维(正难则反),特别是“至多”
“至少”型题目,用间接求法就会较简便.[提醒]应用互斥事件概率的加法公式,一定要注意首先确定各个事件是否彼此互斥,然后求出各事件发生的概率,再求和(或差).[即时应用](2017·洛阳模拟)经统计,在某储蓄所一个营
业窗口等候的人数及相应的概率如下:排队人数012345人及5人以上概率0.10.160.30.30.10.04求:(1)至多2人排队等候的概率是多少?(2)至少3人排队等候的概率是多少?解:记“无人排队等
候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F互斥.(1)记“至多2人排队等候”为
事件G,则G=A∪B∪C,所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)法一:记“至少3人排队等候”为事件H,则H=D∪E∪F,所以P(H)=P(D∪E∪F)=P(D
)+P(E)+P(F)=0.3+0.1+0.04=0.44.法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.