【文档说明】(黑龙江版)2022年中考数学模拟练习卷01(含答案).doc,共(26)页,456.500 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-31505.html
以下为本文档部分文字说明:
中考数学模拟练习卷一、选择题(将正确选项涂在答题卡相应的位置上,每小题3分,满分36分)1.(3分)如图图形中,既是轴对称图形,又是中心对称图形的是()A.圆B.平行四边形C.五角星D.等边三角形2.(3分)下列计算正确的是(
)A.2a﹣2=B.a6÷a2+a4=2a4C.(a﹣b)2=a2﹣b2D.(﹣2a3)2=﹣4a63.(3分)函数的自变量x的取值范围是()A.x>0B.x≥0C.x>1D.x≠14.(3分)由一些大小相同的小正方体搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的
小正方体的个数最多是()A.7B.8C.9D.105.(3分)将抛物线y=(x+2)2﹣3向右平移3个单位,得到的抛物线与y轴的交点坐标是()A.(0,﹣2)B.(0,﹣1)C.(0,2)D.(0,3)6.(3分)有三张质地相同的卡片,正面分别写有数字
﹣2,﹣1,1,现将三张卡片背面朝上随机抽取一张,以其正面数字作为x的值,然后从剩余的两张卡片随机抽一张,以其正面数字作为y的值,则点(x,y)在第三象限的概率()A.B.C.D.7.(3分)如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,⊙O的直径AD=6,则BD的长
为()A.2B.3C.2D.38.(3分)学校举办“创建文明城”演讲比赛,张老师拿出90元钱全部购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本15元,乙种笔记本每本5元,且乙种笔记本的数量是甲种笔记本的整数倍,则购买笔记本的方案有()A.2种B.3种C.4种D.5种9.(3分)在同一直角坐标系中
,函数y=和y=kx+k的大致图象是()A.B.C.D.10.(3分)小明为准备体育中考,每天早晨坚持锻炼,某天他慢跑到江边,休息一会后快跑回家,能大致反映小明离家的距离y(m)与时间x(s)的函数关系图象是()A.B.C.D.11.(3分)等边△
ABC如图放置,A(1,1),B(3,1),等边三角形的中心是点D,若将点D绕点A旋转90°后得到点D′,则D′的坐标()A.(1+,0)B.(1﹣,0)或(1+,2)C.(1+,0)或(1﹣,2)D.(2+,0)或(2﹣
,0)12.(3分)如图,正方形纸片ABCD,P为正方形AD边上的一点(不与点A,点D重合),将正方形纸片折叠,使点B落在点P处,点C落在点G处,PG交DC于点H,折痕为EF,连接BP,BH.BH交EF于点M,连接PM.下列结论:①BE=PE;②EF=BP;
③PB平分∠APG;④MH=MF;⑤BP=BM,其中正确结论的个数是()A.5B.4C.3D.2二、填空题(将正确答案写在答题卡相应的横线上,每小题3分,满分24分)13.(3分)2015年黑龙江省地区生产总值实现15083亿元,用科学记数法表示15083亿元为元.1
4.(3分)如图,已知四边形ABCD,对角线AC,BD交于点O,AB=CD,请添加一个条件(只添一个即可),使四边形ABCD是平行四边形.15.(3分)一件商品的进价为a元,将进价提高100%后标价,再按标价打七折销售,则这件商品销
售后的利润为元.16.(3分)5个正整数,中位数是4,唯一的众数是6,则这5个数和的最大值为.17.(3分)若二次函数y=ax2+bx+c(a≠0)的图象的对称轴x=2,且图象经过点(3,2),则a+b+c的值为.18.(3分)⊙O
的半径为5,两条弦AB=8,CD=6,且AB∥CD,直径MN⊥AB于点P,则PC的值为.19.(3分)等腰△ABC的腰AC边上的高BD=3,且CD=5,则tan∠ABD=.20.(3分)如图,AC=4,BC=
3,且BC边在直线l上,将△ABC绕点C顺时针旋转到位置①可得到P1,再将位置①的三角形绕点P1顺时针旋转到位置②可得到P2,将位置②的三角形绕点P2顺时针旋转到位置③得到P3,按此规律继续旋转,则CP2016=.三、解答题(将解题
过程写在答题卡相应的位置上,满分60分)21.(5分)先化简,(1+),再从﹣2≤x≤2范围内选取一个适当的整数x代入求值.22.(6分)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C.请解答下列问题:(1)求抛物线的函数解析式并直接写出顶点M
坐标;(2)连接AM,N是AM的中点,连接BN,求线段BN长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).23.(6分)已知直角△ABC中,∠C=90°,∠A=30°,AB=4,以AC为腰,在△ABC外作顶角为30°的
等腰三角形ACD,连接BD.请画出图形,并直接写出△BCD的面积.24.(7分)某校九年级数学测试后,为了解学生学习情况,随机抽取了九年级部分学生的数学成绩进行统计,得到相关的统计图表如下.成绩/分120﹣111110﹣1011
00﹣9190以下[来源:学_科_网Z_X_X_K]成绩等级ABCD请根据以上信息解答下列问题:(1)这次统计共抽取了名学生的数学成绩,补全频数分布直方图;(2)若该校九年级有1000名学生,请据此估计该校九年级此次数学成绩在B等级以上(含B等级)的学生有多少人?(3
)根据学习中存在的问题,通过一段时间的针对性复习与训练,若A等级学生数可提高40%,B等级学生数可提高10%,请估计经过训练后九年级数学成绩在B等级以上(含B等级)的学生可达多少人?25.(8分)如图1所示,在A,B两地之间有汽车站C站,客车由C站驶往A地,到达A地后立即原速驶往B地,货车
由B地驶往A地,两车同时出发,匀速行驶.图2是客车、货车离C站的距离y(千米)与行驶时间x(小时)之间的函数关系图象,请结合图象信息解答下列问题:(1)A,B两地间的距离是千米;请直接在图2中的括号内填上
正确数字;(2)求货车由B地驶往A地过程中,y与x之间的函数关系式,并写出自变量x的取值范围;(3)客、货两车出发多长时间,距各自出发地的距离相等?直接写出答案;(4)客、货两车出发多长时间,相距500千米?
直接写出答案.26.(8分)等腰直角△ABC,△MAD中,∠BAC=∠DMA=90°,连接BM,CD.且B,M,D三点共线(1)当点D,点M在BC边下方,CD<BD时,如图①,求证:BM+CD=AM;(提示:延长DB到点N,使MN=MD,连接AN.)(2)当点D在AC边右侧,点
M在△ABC内部时,如图②;当点D在AB边左侧,点M在△ABC外部时,如图③,请直接写出线段BM,CD,AM之间的数量关系,不需要证明;(3)在(1),(2)条件下,点E是AB中点,MF是△AMD的角平分线,连接E
F,若EF=2MF=6,则CD=.27.(10分)某文具店四月份购进甲、乙两种文具共80件,分别用去400元、1200元,甲种文具每件的进价是乙种文具的.请解答下列问题:(1)求甲、乙两种文具每件的进价;(2)五月份文具店决定
再次购进甲、乙两种文具共80件,进价不变,甲、乙文具每件售价分别是15元、40元.若80件文具全部售出,求销售甲乙文具获利y(元)与购进甲种文具x(件)之间的函数解析式;(3)在(2)的条件下,销售前文具店决定从这80件文
具中拿出一部分,赠送给某校在“牡丹江首届汉字听写电视大赛”获一、二等奖的6名同学,作为奖品,其余文具全部售出.已知一等奖每人1件甲种文具,3件乙种文具;二等奖每人4件甲种文具,1件乙种文具,这些奖品总进价超过450元,文具店购进的80件文具仅获利30元.请直接写出文具
店购进甲、乙两种文具的方案.28.(10分)已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=.(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴
于点D,S△DOE=16.若反比例函数y=的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;
若不存在,请说明理由.参考答案与解析一、选择题1.【解答】解:A、是轴对称图形,是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:A.2.【解答】解:A、
2a﹣2=,故此选项错误;B、a6÷a2+a4=2a4,正确;C、(a﹣b)2=a2﹣2ab+b2,故此选项错误;D、(﹣2a3)2=4a6,故此选项错误;故选:B.3.【解答】解:根据题意得,x﹣1>0,解得x>1.故选:C.4.【解答】解:由俯视图易得最底层有6个小正方体,第二层最多有3个小正
方体,那么搭成这个几何体的小正方体最多为3+6=9个.故选:C.5.【解答】解:∵将抛物线y=(x+2)2﹣3向右平移3个单位,∴得到:y=(x﹣1)2﹣3,当x=0时,y=﹣2,∴得到的抛物线与y轴的交点坐标是:(0,﹣2).故选:A.6.【解答】解:画树状图如下:由树状图知,共有6
钟等可能结果,其中点(x,y)在第三象限的有2种结果,所以点(x,y)在第三象限的概率为=,故选:D.7.【解答】解:连接OB,如图,∵AB=BC,∴=,∴OB⊥AC,∴OB平分∠ABC,∴∠ABO=∠ABC=×120°=60
°,∵OA=OB,∴∠OAB=60°,∵AD为直径,∴∠ABD=90°,在Rt△ABD中,AB=AD=3,∴BD=AB=3.故选:D.8.【解答】解:设甲种笔记本购买了x本,乙种笔记本y本,由题意,得15x+5y=90整理,得3x+y=16因为
y是x的整数倍,所以当x=2时,y=10.当x=4时,y=4.综上所述,共有2种购买方案.故选:A.9.【解答】解:①当k>0时,一次函数y=kx﹣k经过一、二、三象限,反比例函数的y=(k≠0)的图象经过一、三象
限,故D选项的图象符合要求;②当k<0时,一次函数y=kx﹣k经过二、三、四象限,反比例函数的y=(k≠0)的图象经过二、四象限,没有符合该条件的选项.故选:D.10.【解答】解:∵他慢跑离家到江边,∴随着时间的增加离
家的距离越来越远,∵休息了一会,∴他离家的距离不变,又∵后快跑回家,∴他离家越来越近,直至为0,∵去时快跑,回时慢跑,∴小明离家的距离y与时间x的函数关系的大致图象是A.故选:A.11.【解答】解;如图作D′H⊥AB于H.DE⊥AB于E.在Rt△ADE中,∵∠DAE=30°,AE=1,∴DE
=,∵AD=AD′,∠DAE=∠D′,∠AED=∠D′HA=90°,∴△ADE≌△D′AH,∴AH=DE=,D′H=1,∵A(1,1),∴D′(1+,0),同法当逆时针旋转时,D″(1﹣,2)故选:C.12.【解答】解:
如图1,根据翻折不变性可知:PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH﹣∠EPB=∠EBC﹣∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.故①
③正确;如图1中,作FK⊥AB于K.设EF交BP于O.∵∠FKB=∠KBC=∠C=90°,∴四边形BCFK是矩形,∴KC=BC=AB,∵EF⊥PB,∴∠BOE=90°,∵∠ABP+∠BEO=90°,∠BEO+∠EFK=90°,∴∠ABP=∠EFK,∵∠A=∠EKF=90°,∴△ABP
≌△KFE(ASA),∴EF=BP,故②正确,如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,在△ABP和△QBP中,,∴△ABP≌△QBP(AAS).∴AP=QP,AB=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,
BH=BH,∴△BCH≌△BQH(HL)∴∠QBH=∠HBC,∠ABP=∠PBQ,∴∠PBH=∠PBQ+∠QBH=∠ABC=45°,∵MP=MB,∴△PBM是等腰直角三角形,∴PB=BM,故⑤正确;当等P与A重合时,显然MH>MF,故④错误,故选:B.二、填空题(将
正确答案写在答题卡相应的横线上,每小题3分,满分24分)13.【解答】解:用科学记数法表示15083亿元为1.5083×1012元.故答案为:1.5083×1012.14.【解答】解:∵AB=CD,∴当AB∥CD或AD=BC时,四边形ABCD是平行四边形.故答案为AB∥C
D或AD=BC.(答案不唯一)15.【解答】解:由题意得:实际售价为:(1+100%)a•70%=1.4a(元),[来源:学|科|网]利润为1.4a﹣a=0.4a元.故答案为:0.4a16.【解答】解:因为五个正整数从小到大排列后,其中位数是4,这组数据的唯一众数是
6,所以这5个数据分别是x,y,4,6,6,其中x=1或2,y=2或3.所以这5个数的和的最大值是2+3+4+6+6=21.故答案为:21.17.【解答】解:由题意可知:点(3,2)关于直线x=2的对称点的坐标为(1,2),∴x=1,y=2,∴a+b+c=2故答案为:218.【解答】解:当AB
、CD在圆心O的两侧时,如图,连接OA、OC,∵AB∥CD,MN⊥AB,∴AP=AB=4,MN⊥CD,∴CQ=CD=3,在Rt△OAP中,OP==3,同理,OQ=4,则PQ=OQ+OP=7,∴PC==,当AB、CD在圆心O的同侧时,PQ=OQ﹣OP=
1,∴PC==,故答案为:或.19.【解答】解:①如图1中,当△ABC是锐角三角形,CB=CA时,在Rt△CDB中,BC==,∴AD=AC﹣CD=﹣5,∴tan∠ABD==.②如图2中,当△ABC是钝角三角形,CB=CA时,[来源:学科网ZXXK]在Rt△CDB中,BC=AC==,∴
tan∠ABD==,③如图3中,当△ABC是钝角三角形,AB=AC时,设AB=AC=x,在Rt△ADB中,x2=32+(5﹣x)2,∴x=,∴tan∠ABD==,综上所述,或或.故答案为或或.20.【解答】解
:∵AC=4,BC=3,∴AB==5由题意可得CP3=4+5+3=12∴每3次旋转,△ABC沿水平方向平移12∴CP2016=12×=8064故答案为8064三、解答题(将解题过程写在答题卡相应的位置上,满分60分)21.【解答】解:(1+)==﹣=﹣,当x=2时,原式=.22.【解答】
解:(1)抛物线解析式为y=﹣(x+4)(x﹣2),即y=﹣x2﹣x+2,∵y=﹣(x+1)2+,∴抛物线的顶点坐标为(﹣1,);(2)∵N是AM的中点,∴M点的坐标为(﹣,),∴BN==.23.【解答】解:①当CD=CA,∠DCA=30°时,作
DH⊥AC于H.在Rt△ACB中,∵∠CAB=30°,AB=4,[来源:Zxxk.Com]∴BC=2,AC=2,∵∠ACD=∠CBA=30°,∴CD∥AB,∴S△BCD=S△ADC=•AC•DH=×2×=3.②当AC=AD,∠CAD=30°时,作DH⊥AC于H.S△BCD=S△ABC+S△
ADC﹣S△ABD=×2×2+×2×﹣×4×3=2﹣3③当DA=DC,∠ADC=30°时,作DH⊥AC于H,连接BH.∵DA=DC,DH⊥AC,∴AH=CH=,∵∠DHC=∠ACB=90°,[来源:学*科*网]∴DH∥BC,∴S△BCD=
S△BCH=×2×=,24.【解答】解:(1)本次调查抽取的总人数为15÷=50(人),则A等级人数为50×=10(人),D等级人数为50﹣(10+15+5)=20(人),补全直方图如下:故答案为:50.(2)估计该校九年级此次数学成绩在B等级以上
(含B等级)的学生有1000×=500(人);(3)∵A级学生数可提高40%,B级学生数可提高10%,∴B级学生所占的百分比为:30%×(1+10%)=33%,A级学生所占的百分比为:20%×(1+40%
)=28%,∴1000×(33%+28%)=610(人),∴估计经过训练后九年级数学成绩在B以上(含B级)的学生可达610名.25.【解答】解:(1)由题意:AC=120千米,BC=480千米,AB=AC+BC=600千米,故答案为600.(2)①设B→C的函数解析式为y=kx+b,则
有解得,∴y=﹣60x+480,直线y=﹣60x+480与x轴交于(8,0),②设C→A的函数解析式为y=mx+n,则有解得,∴y=60x﹣480综上所述,y=.(3)设客、货两车出发x小时,距各自出发
地的距离相等.由题意客车速度为100千米/小时,货车速度为60千米/小时.则有240﹣100x=60x,解得x=1.5,或100x﹣240=60x,解得x=6,∴客、货两车出发1.5小时或6小时,距各自出发地的距离相等.(4)设客、货两车出发y小时,相距500千米.则有480﹣60
x+100x=500或240﹣100x+480﹣60x=500,解得x=或,当客车到达B时,60x=500,解得x=,综上所述,客、货两车出发小时或小时或,相距500千米.26.【解答】解:(1)延长DB到点N,使MN=MD,连接A
N∵等腰直角△ABC,△MAD∴AM=MD,AB=AC,∠ADM=45°=∠MAD∵MN=MD,∠DMA=90°,AM=AM∴△AMN≌△AMD∴AD=AN,∠NAM=∠MAD=45°∴∠NAD=90°∵∠NAD=∠BAC=90°∴∠NAB=∠CAD,且
AN=AD,AB=AC∴△ABN≌△ACD∴BN=CD∵MN=BM+BN∴AM=MD=BM+CD(2)当点D在AC边右侧,点M在△ABC内部时,BM=CD+AM如图:在线段BM上截取MN=DM∵等腰直角△ABC,△MA
D∴AM=MD,AB=AC,∠ADM=45°=∠MAD∵MN=DM∴AM=DM=MN,且∠AMD=90°∴∠AND=∠ADN=∠NAM=∠DAM=45°∴AN=AD,∠NAD=90°∵∠NAD=∠BAC=90°∴∠BAN=∠DAC,且AN=AD,AB=AC∴△ABN≌△AC
D∴BN=CD∵BM=BN+MN∴BM=CD+AM当点D在AB边左侧,点M在△ABC外部时,CD=BM+AM如图:延长DM到N,使MN=DM.∵等腰直角△ABC,△MAD∴AM=MD,AB=AC,∠ADM=45°=∠MAD∵MN=DM∴AM=DM=MN,且∠A
MD=90°∴∠AND=∠ADN=∠NAM=∠DAM=45°∴AN=AD,∠NAD=90°∵∠NAD=∠BAC=90°∴∠BAN=∠DAC,且AN=AD,AB=AC∴△ABN≌△ACD∴BN=CD∵BN=BM+MN∴CD=B
M+AM(3)∵MF是△AMD的角平分线,∠DMA=90°,AM=DM∴AF=DF=MF且点E是AB中点∴BD=2EF=12,∵EF=2MF=6∴MF=3∴AF=DF=MF=3∴AM=DM=3当点D,点M在BC边下方,CD<BD时,AM=BM+CD∴CD=3﹣(12﹣3)=6﹣12<0故不存
在这样的点D当点D在AB边左侧,点M在△ABC外部时,BM=CD+AM∴CD=BM﹣AM=12﹣6当点D在AB边左侧,点M在△ABC外部时,CD=BM+AM∵AB<DM∴不存在这样的点D综上所述,CD=12﹣6故答案为12﹣627.【解答
】解:(1)设甲种商品每件的进价是x元,则乙种商品每件的进价为3x元,依题意可得:,解得:x=10,经检验:x=10为原分式方程的解,且符合题意,则3x=3×10=30,答:甲、乙两种商品的进价分别为每件10元、30元;(2)设:购进甲种文具x件,则购进乙文具为80﹣x件,由题意得:
y=(15﹣10)x+(40﹣30)(80﹣x)=﹣5x+800,答:销售甲乙文具获利y(元)与购进甲种文具x(件)之间的函数解析式y﹣5x+800.(3)设:购进甲种文具x件(购进乙文具为80﹣x件)、有a人获得一等奖(6﹣a人获得二等奖),由
题意得:①6名同学奖品的总价格:一等奖,甲为a元、乙为3a元,二等奖,甲4(6﹣a),乙6﹣a,则:a+3a+4(6﹣a)+6﹣a≤450,解得:a≥1,即1≤a<6,②发完奖品后,甲剩下文具x﹣(24﹣3a)=3a+x﹣24,甲剩下文具80﹣x﹣(6+2
a)=74﹣x﹣2a,由题意得:文具店购进的80件文具获利=发完奖品后两种文具获利﹣6名同学奖品的总进价,即:30=(15﹣10)•(3a+x﹣24)+(74﹣x﹣2a)(40﹣30)﹣(24﹣3a)•10+(6+2a)•30解得:x=34﹣7a,由于1≤a<6,且a为正整数,x=27
,20,13,6.乙文具:80﹣x=43,60,67,74.答:购进甲、乙两种文具的方案有4种,甲乙分别为:27、43;20、60;13、67;6、74.28.【解答】解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,∴OB=4,在Rt△AOB中,tan∠BAO==,∴OA=8,
∴A(﹣8,0).(2)∵EC⊥AB,∴∠ACD=∠AOB=∠DOE=90°,∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,∴∠OAB=∠DEO,∴△AOB∽△EOD,∴=,∴OE:OD=OA:OB=2,设OD=m,则OE=2m,∵•m•2m=16,∴m=
4或﹣4(舍弃),∴D(﹣4,0),E(0,﹣8),∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),∴直线AB的解析式为y=x+4,由,解得,∴C(﹣,),∵若反比例函数y=的图象经过点C,∴k=﹣.(3)如图1中,当四边形MNPQ是矩形时,∵
OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,PB=PN=,∴P(﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△D
MQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P(0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述
,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);