(河南版)2022年中考数学模拟练习卷03(含答案)

DOC
  • 阅读 37 次
  • 下载 0 次
  • 页数 29 页
  • 大小 597.000 KB
  • 2022-11-21 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
(河南版)2022年中考数学模拟练习卷03(含答案)
可在后台配置第一页与第二页中间广告代码
(河南版)2022年中考数学模拟练习卷03(含答案)
可在后台配置第二页与第三页中间广告代码
(河南版)2022年中考数学模拟练习卷03(含答案)
可在后台配置第三页与第四页中间广告代码
(河南版)2022年中考数学模拟练习卷03(含答案)
(河南版)2022年中考数学模拟练习卷03(含答案)
还剩10页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 29
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】(河南版)2022年中考数学模拟练习卷03(含答案).doc,共(29)页,597.000 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-31422.html

以下为本文档部分文字说明:

中考数学模拟练习卷一.选择题(共15小题,满分45分)1.﹣3的倒数是()A.3B.C.﹣D.﹣32.民族图案是数学文化中的一块瑰宝.下列图案中,既是中心对称图形也是轴对称图形的是()A.B.C.D.3.下列计算,正确的是()A.

B.C.D.4.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为()A.0.21×107B.2.1×106C

.21×105D.2.1×1075.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°6.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)7.一个空间几何体的主

视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.48.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米)4.504.604.654.704.754.80人

数232341则这些运动员成绩的中位数、众数分别是()A.4.65、4.70B.4.65、4.75C.4.70、4.75D.4.70、4.709.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边

长的正方形ACEF的周长为()A.16B.12C.24D.1810.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为()A.﹣2B.﹣1C.1D.211.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分

别是()A.(﹣2,4),(1,3)B.(﹣2,4),(2,3)C.(﹣3,4),(1,4)D.(﹣3,4),(1,3)12.在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的长是()A.3B.C.D.13.已知二次函数y

=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线()A.x=1B.x=C.x=﹣1D.x=﹣14.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标

为()A.()B.(2,﹣1)C.(1,)D.(﹣1.,)15.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形

称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果△ABC是该抛物线的内接格点三角形,AB=3,且点A,B,C的横坐标xA,xB,xC满足xA<xC<xB,那么符合上述条件的抛物线条数是()A.7B.8C.14D.16二.填空题

(共6小题,满分18分,每小题3分)16.比较大小:3(填“>”、“<”或“=”).17.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为.18.如图,在△ABC中,DM垂直平分AC,交BC于点D,连接AD,若∠C=28°,AB=BD,则∠B的度数

为度.19.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=.20.双曲线y1=、y2=在第一象限的图象如图,过y2上的任意一点A,作x轴的平行线交y1于B,交y轴于C,过A作x轴的垂线交y1于D,交x轴于E,连接BD、CE,则=.21.如图,边长一定的正方形

ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=BD;③BN+DQ=NQ;④为定值.其中一定成立的是.三.解

答题(共8小题,满分48分)22.(7分)(1)计算:(a﹣b)2﹣a(a﹣2b);(2)解方程:=.23.如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF.求证:FC∥AB.24.(4分)如图所示,AB是⊙O的一条弦,DB切⊙O于点B,过

点D作DC⊥OA于点C,DC与AB相交于点E.(1)求证:DB=DE;(2)若∠BDE=70°,求∠AOB的大小.25.(8分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,

耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:时间(分钟)里程数(公里)车费(元)小明8812小刚121016(1)求x,y的值;(2)如果小华也用该打车方

式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?26.(8分)为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自

主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是人;(2)图2中α是度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于1.5小时有人;(4)老师想从学习效果较

好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.27.(9分)如图1,▱OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=(x>0)的图象经过点B.(1)求点B的坐标和

反比例函数的关系式;(2)如图2,将线段OA延长交y=(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,①求直线BD的解析式;②求线段ED的长度.28.(9分)如图①,在四边形ABCD中,

AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.(1)求证:BN平分∠ABE;(2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;(3)如图②,若点F为A

B的中点,连结FN、FM,求证:△MFN∽△BDC.29.如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,

使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E,A′两点.(1)填空:∠AOB=°,用m表示点A′的坐标:A′(,);(2)当抛物线的顶点为A′,抛物线与线段AB交于点P

,且=时,△D′OE与△ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:①求a,b,m满足的关系式;②当m为定值,抛物线与四边形ABCD有

公共点,线段MN的最大值为10,请你探究a的取值范围.参考答案与试题解析一.选择题1.﹣3的倒数是()A.3B.C.﹣D.﹣3【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.[来源:学+科+网]故选:C.2.民族图案是数学文化中的一块瑰宝.下列图案中,既是中心对称

图形也是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选:D.3.下列计算,

正确的是()A.B.C.D.【解答】解:∵=2,∴选项A不正确;∵=2,∴选项B正确;∵3﹣=2,∴选项C不正确;∵+=3≠,∴选项D不正确.故选:B.4.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来

越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为()A.0.21×107B.2.1×106C.21×105D.2.1×107【解答】解:210万=2.1×106,故选:B.5.

如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°【解答】解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC

=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选:B.6.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)【解答】解:点M(1,2)关于y

轴对称点的坐标为(﹣1,2).故选:A.7.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.4【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1

×1×2=6π,故选A.8.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米)4.504.604.654.704.754.80人数232341则这些运动员成绩的中位数、众数分别是()A.4.65、4.70B.4.65、4.75C.4.70、4.75D.4.70、4.

70【解答】解:这些运动员成绩的中位数、众数分别是4.70,4.75.故选:C.9.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.16B.12C.24D.18【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60

°,∴△ABC是等边三角形,∴AC=AB=BC=4,∴以AC为边长的正方形ACEF的周长为:4AC=16.故选:A.10.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为()A.﹣2B.﹣1C.1D

.2【解答】解:a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.故选:C.11.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分

别是()A.(﹣2,4),(1,3)B.(﹣2,4),(2,3)C.(﹣3,4),(1,4)D.(﹣3,4),(1,3)【解答】解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,则∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°,∵四边形OABC是

正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD,在△AOE和△OCD中,,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD,∵点A的坐标是(﹣3,1),∴OE=3

,AE=1,∴OD=1,CD=3,∴C(1,3),同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4);故选:A.12.在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的长是()A.

3B.C.D.【解答】解:∵cosA=,∴AB=,故选:A.13.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线()A.x=1B.x=C.x=﹣1D.x=﹣【解答】解:∵A在

反比例函数图象上,∴可设A点坐标为(a,),∵A、B两点关于原点对称,∴B点坐标为(﹣a,﹣),又∵A、B两点在二次函数图象上,∴代入二次函数解析式可得,解得或,∴二次函数对称轴为x=﹣.故选:D.14.如图,将边

长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A.()B.(2,﹣1)C.(1,)D.(﹣1.,)【解答】解:作AD⊥y轴于D,作CE⊥y轴于E,如图所示:则∠ADO=∠OEC=90°,∴∠1+∠2=90°,∵点A的坐标为(1,),∴AD=

1,OD=,∵四边形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠2,在△OCE和△AOD中,,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴点C的坐标为(,﹣1).故选:A.15.

如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果△

ABC是该抛物线的内接格点三角形,AB=3,且点A,B,C的横坐标xA,xB,xC满足xA<xC<xB,那么符合上述条件的抛物线条数是()A.7B.8C.14D.16【解答】解:如图,开口向下,经过点(0,0

),(1,3),(3,3)的抛物线的解析式为y=﹣x2+4x,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,所以,一共有7条抛物线,同理可得开口向上的抛物线也有7条,所以,满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=14.故选:C.二.填空题(

共6小题,满分18分,每小题3分)16.比较大小:3<(填“>”、“<”或“=”).【解答】解:32=9,=10,∴3<.17.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为﹣1.【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数

根,∴△=b2﹣4ac=0,即:22﹣4(﹣m)=0,解得:m=﹣1,故选答案为﹣1.18.如图,在△ABC中,DM垂直平分AC,交BC于点D,连接AD,若∠C=28°,AB=BD,则∠B的度数为68度.【解答】解:∵DM垂直平分A

C,∴AD=CD,∴∠DAC=∠C=28°,∴∠ADB=∠C+∠DAC=28°+28°=56°,∵AB=BD,∴∠ADB=∠BAD=56°,在△ABD中,∠B=180°﹣∠BAD﹣∠ADB=180°﹣56°﹣56°=68°.故答案为:68.19.如图,△ABC是⊙O的内接三角形,AD是

⊙O的直径,∠ABC=50°,则∠CAD=40°.【解答】解:连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠ABC=50°,∴∠CAD=90°﹣∠D=40°.故答案为:40°.20.双曲线y1=、y2=在第一象限的图象如图,过y2上的任意一点A,作x轴的平行线交y1于B

,交y轴于C,过A作x轴的垂线交y1于D,交x轴于E,连接BD、CE,则=.【解答】解:设A点的横坐标为a,把x=a代入y=得y=,则点A的坐标为(a,),∵AC⊥y轴,AE⊥x轴,∴C点坐标为(0,),B点的纵坐标为;E点坐标为(a,0),D点的横坐标为a,∵B点、D点

在y=上,∴当y=时,x=;当x=a,y=,∴B点坐标为(,),D点坐标为(a,),∴AB=a﹣=,AC=a,AD=﹣=,AE=,∴AB=AC,AD=AE,[来源:Zxxk.Com]而∠BAD=∠CAD,∴△BAD∽△CAE,∴==.故答案为.21.如图,边长一定的正方形ABCD,Q为CD上一个动

点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=BD;③BN+DQ=NQ;④为定值.其中一定成立的是①②③④.【解答】解:如图1所示:作AU⊥NQ于U,连接AN,AC,∵∠AMN=∠ABC=90°,∴A,B,N

,M四点共圆,∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,∴∠ANM=∠NAM=45°,∴AM=MN,故①正确.由同角的余角相等知,∠HAM=∠PMN,在△AHM和△MPN中,,∴△AHM≌△MPN(AAS),∴MP=AH=AC=BD,故②正确,∵∠BAN+∠QAD=∠NAQ=

45°,∴△ADQ绕点A顺时针旋转90度至△ABR,使AD和AB重合,连接AN,则∠RAQ=90°,△ABR≌△ADQ,∴AR=AQ,∠RAN=90°﹣45°=45°=∠NAM,在△△AQN和△ANR中,,∴△AQN≌△ANR(SAS),∴NR

=NQ,[来源:学科网ZXXK]则BN=NU,DQ=UQ,∴点U在NQ上,有BN+DQ=QU+UN=NQ,故③正确.如图2所示,作MS⊥AB,垂足为S,作MW⊥BC,垂足为W,点M是对角线BD上的点,∴四边形SMWB是正方形,∴MS=MW=BS=BW,∠SMW=90°,∴∠AMS=∠NMW,

在△AMS和△NMW中,,∴△AMS≌△NMW(ASA),∴AS=NW,∴AB+BN=SB+BW=2BW,∵BW:BM=1:,∴==,故④正确.故答案为:①②③④.三.解答题(共8小题,满分48分)22.(7分)(1)计算:(a﹣b)2﹣a(a﹣2b);(2)解方程:=

.【解答】(1)解:原式=a2﹣2ab+b2﹣a2+2ab=b2.(2)解:两边乘x(x﹣3)得到2x=3(x﹣3)解得x=9经检验,x=9为原方程的根,所以原方程的解为x=9.23.如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF.求证:FC∥AB.【解答

】证明:∵E是AC的中点,∴AE=CE,又EF=DE,∠AED=∠FEC,在△ADE与△CFE中,,∴△ADE≌△CFE(SAS).∴∠EAD=∠ECF.∴FC∥AB.24.(4分)如图所示,AB是⊙O的一条弦,DB切⊙O于点B,过点D作DC⊥OA于点C,

DC与AB相交于点E.(1)求证:DB=DE;(2)若∠BDE=70°,求∠AOB的大小.【解答】解(1)证明:∵DC⊥OA,∴∠OAB+∠CEA=90°,∵BD为切线,∴OB⊥BD,∴∠OBA+∠ABD=90°,∵OA=OB,∴∠OAB=∠OBA,∴∠CEA=∠ABD,∵∠CEA=∠BED

,∴∠BED=∠ABD,∴DE=DB.(2)∵DE=DB,∠BDE=70°,∴∠BED=∠ABD=55°,∵BD为切线,∴OB⊥BD,∴∠OBA=35°,∵OA=OB,∴∠OBA=180°﹣2×35°=110°.25.

(8分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间

如表:时间(分钟)里程数(公里)车费(元)小明8812小刚121016(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?【解答】解:(1)根据题意得:,解得:.(2)11×1+14×=18(元).答:小

华的打车总费用是18元.26.(8分)为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是40人;(

2)图2中α是54度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于1.5小时有330人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的

方法求出选中小亮A的概率.【解答】解:(1)∵自主学习的时间是1小时的有12人,占30%,∴12÷30%=40,故答案为:40;„(2分)(2)×360°=54°,故答案为:54;40×35%=14;补充图形如图:故答案为:54;(

3)600×=330;„(2分)故答案为:330;(4)画树状图得:∵共有12种等可能的结果,选中小亮A的有6种,∴P(A)=.„(2分)27.(9分)如图1,▱OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=(x>0)的图象经过点B.(1)求点B的坐标和反比

例函数的关系式;(2)如图2,将线段OA延长交y=(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,①求直线BD的解析式;②求线段ED的长度.【解答】解:(1)如图1,过点A作AP⊥x轴于点P,则AP=1,OP=2.[来源:学_科_网]又∵四边形OABC是平行四边形,∴AB=O

C=3,∴B(2,4).∵反比例函数y=(x>0)的图象经过的B,∴4=.∴k=8.∴反比例函数的关系式为y=.(2)①点A(2,1),∴直线OA的解析式为y=x(Ⅰ).∵点D在反比例y=(Ⅱ)函数图象上,联立(Ⅰ)(Ⅱ)解得,或∵点D在第一象限

,∴D(4,2).由B(2,4),点D(4,2),∴直线BD的解析式为y=﹣x+6.②如图2,把y=0代入y=﹣x+6,解得x=6.∴E(6,0),过点D作DH⊥x轴于H,∵D(4,2),∴DH=2,HE=6﹣4=2

,由勾股定理可得:ED==2.28.(9分)如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.(1)求证:BN平分∠ABE;(2)若BD=1,连结DN,当四边形DNBC为平行四边形

时,求线段BC的长;(3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵M为BC的中点,∴AM⊥BC,在Rt△ABM中,∠MAB+∠ABC=90°,在Rt△CBE中,∠EBC+

∠ACB=90°,∴∠MAB=∠EBC,又∵MB=MN,∴△MBN为等腰直角三角形,∴∠MNB=∠MBN=45°,∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,∴∠NBE=∠ABN,即BN平分∠ABE;(2)设BM=CM=MN=a,∵四边形DNBC是平行四边形,∴DN=BC=

2a,在△ABN和△DBN中,∵,∴△ABN≌△DBN(SAS),∴AN=DN=2a,在Rt△ABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,解得:a=±(负值舍去),∴BC=2a=;(3)∵F是AB的中点,∴在Rt△MAB中,MF=AF=BF

,∴∠MAB=∠FMN,又∵∠MAB=∠CBD,∴∠FMN=∠CBD,∵==,∴==,∴△MFN∽△BDC.29.如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△

ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E,A′两点.(1)填空:∠AOB=45°,用m表示点A′的坐标:A′(m,﹣m);(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且=时,△D′OE与△ABC是否相似?说明理由;(3)若

E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:①求a,b,m满足的关系式;②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.【解答】解:(1)∵B(2m,0),C(3m,0),∴OB=2

m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m,即A′(m,﹣m);故答案为:45;m,﹣m;(2)

△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵=,∴P(2m,m),∵A′为抛物线的顶点,∴设抛物线解析式为y=a(x﹣m)2﹣m,∵抛物线过点E(0,n),∴n=a(0﹣m)2﹣m,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠A

BC=90°,∴△D′OE∽△ABC;(3)①当点E与点O重合时,E(0,0),∵抛物线y=ax2+bx+n过点E,A′,∴,整理得:am+b=﹣1,即b=﹣1﹣am;②∵抛物线与四边形ABCD有公共点,∴抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为

10,[来源:Zxxk.Com]∴a(3m)2﹣(1+am)•3m=0,整理得:am=,即抛物线解析式为y=x2﹣x,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当

m=2时,a=;若抛物线过点A(2m,2m),则a(2m)2﹣(1+am)•2m=2m,解得:am=2,∵m=2,∴a=1,则抛物线与四边形ABCD有公共点时a的范围为≤a≤1.

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 113
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?