(河南版)2022年中考数学模拟练习卷02(含答案)

DOC
  • 阅读 53 次
  • 下载 0 次
  • 页数 28 页
  • 大小 562.000 KB
  • 2022-11-21 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
(河南版)2022年中考数学模拟练习卷02(含答案)
可在后台配置第一页与第二页中间广告代码
(河南版)2022年中考数学模拟练习卷02(含答案)
可在后台配置第二页与第三页中间广告代码
(河南版)2022年中考数学模拟练习卷02(含答案)
可在后台配置第三页与第四页中间广告代码
(河南版)2022年中考数学模拟练习卷02(含答案)
(河南版)2022年中考数学模拟练习卷02(含答案)
还剩10页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 28
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】(河南版)2022年中考数学模拟练习卷02(含答案).doc,共(28)页,562.000 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-31421.html

以下为本文档部分文字说明:

1中考数学模拟练习卷一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。)1.﹣2的绝对值是()A.2B.C.﹣2D.﹣2.将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.3.下列各式变形中,正确的是()A.x2•

x3=x6B.=|x|C.(x2﹣)÷x=x﹣1D.x2﹣x+1=(x﹣)2+4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=48°,则∠2的度数为()A.48°B.42°C.40°D.45°5.函数y=中自变量x的取值范

围是()A.x≥2B.x>2C.x≤2D.x≠26.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩

的()A.众数B.方差C.平均数D.中位数7.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5B.﹣1C.2D.﹣58.如图,在▱ABCD中,E为AD的三等分点,AE=AD,连接B

E交AC于点F,AC=12,则AF为()2A.4B.4.8C.5.2D.69.星期天,小明从家出发,以15千米/小时的速度骑车去郊游,到达目的地休息一段时间后原路返回,已知小明行驶的路程s(千米)与时间t(小时)之间的函数关系如图所示,则小

明返程的速度为()A.15千米/小时B.10千米/小时C.6千米/小时D.无法确定10.如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O交于点E,则下列结论中不一定正确的是()A.AC⊥BCB.BE平分∠ABCC.BE∥CDD.∠D=∠A

二、填空题(本小题共5小题,每小题3分,共15分)11.计算:2﹣2﹣=.12.写出一个二次函数解析式,使它的图象的顶点在y轴上:.13.课外活动中,九(1)班准备把全班男生随机分成两个小组进行拔河比赛,则甲、乙、丙三位同学恰好被分在同一小组的概率为.14.

如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.315.如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,

使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为.三、解答题(本题共8小题,共75分.)16.先化简,再求值:(﹣

)÷,其中实数a,b满足(a﹣2)2+|b﹣2a|=0.17.每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下

列问题:(1)此次抽样调查的样本容量是;(2)补全频数分布直方图,求扇形图中“6吨﹣﹣9吨”部分的圆心角的度数;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部

分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?418.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.(1)试判断四边形DEFG的形状,并说明理由;(2)填空:①若AB=3,当CA=CB时,四边

形DEFG的面积是;②若AB=2,当∠CAB的度数为时,四边形DEFG是正方形.19.某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C的南偏东33°方向,

求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)20.如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)

两点.(1)求b,k的值;5(2)在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=的值时,直接写出自变量x的取值范围;(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.21.某化工材料经销公司购进一种化工原料若

干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料4

0千克,则当天的销售单价为元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?2

2.如图1,四边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接DE,BG.(1)发现①线段DE、BG之间的数量关系是;②直线DE、BG之间的位置关系是.(2)探究如图2,将正方形AEFG绕点A逆时针旋转,(1)中

的结论是否仍然成立?若成立,请给出6证明;若不成立,请说明理由.(3)应用如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD所在直线距离的最大值和最小值.23.如图,以x=1为对称轴的抛物线y=ax

2+bx+c的图象与x轴交于点A,点B(﹣1,0),与y轴交于点C(0,4),作直线AC.(1)求抛物线解析式;(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等,设点P的纵坐标为m,求m的值;(3

)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C、M、N、Q为顶点的四边形是菱形,请直接写出点Q的坐标.72019年河南省中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共10小题,每小题3分

,共30分,下列各小题具有四个答案,其中只有一个是正确的。)1.﹣2的绝对值是()A.2B.C.﹣2D.﹣【考点】17:绝对值.【分析】根据倒数定义求解即可.【解答】解:﹣2的绝对值是2.故选:A.2.将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.【考点】U1:简单几何

体的三视图.【分析】根据三视图的确定方法,判断出钢管无论如何放置,三视图始终是下图中的其中一个,即可.【解答】解:∵一根圆柱形的空心钢管任意放置,∴不管钢管怎么放置,它的三视图始终是,,,主视图是它们中一个,∴主视图不可能是.故选A,3.下列各式变形中,正确的是()A.x2•x

3=x6B.=|x|8C.(x2﹣)÷x=x﹣1D.x2﹣x+1=(x﹣)2+【考点】73:二次根式的性质与化简;46:同底数幂的乘法;4B:多项式乘多项式;6C:分式的混合运算.【分析】直接利用二次根式的性质以及同底数幂的乘法运算法则和分式

的混合运算法则分别化简求出答案.【解答】解:A、x2•x3=x5,故此选项错误;B、=|x|,正确;C、(x2﹣)÷x=x﹣,故此选项错误;D、x2﹣x+1=(x﹣)2+,故此选项错误;故选:B.4.如图,把一块直角三角板的直角顶点放在直

尺的一边上,若∠1=48°,则∠2的度数为()A.48°B.42°C.40°D.45°【考点】JA:平行线的性质.【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【解答】解:如图,∵∠1=48°,∴∠3=∠1=48°,∴∠2=90°﹣48°=42°.故选:B.5.函数y=

中自变量x的取值范围是()A.x≥2B.x>2C.x≤2D.x≠29【考点】E4:函数自变量的取值范围.【分析】根据被开方数大于等于0列不等式求解即可.【解答】解:由题意得,2x﹣4≥0,解得x≥2.故选A.【点评】本题考查了函数自变量的范围,一般从三个

方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了

解自己的成绩,还要了解这7名学生成绩的()A.众数B.方差C.平均数D.中位数【考点】W4:中位数.【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【解答】解:因为7名学生进入前3名肯定是7名学生中最高成绩的3名,而且7个不同

的分数按从小到大排序后,中位数之后的共有3个数,故只要知道自己的成绩和中位数就可以知道是否进入前3名.故选:D.7.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5B.﹣1C.2D.﹣5【考点】AB:根与系数的关系.【分

析】根据关于x的方程x2+3x+a=0有一个根为﹣2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【解答】解:∵关于x的方程x2+3x+a=0有一个根为﹣2,设另一个根为m,∴﹣2+m=,解得,m=﹣1,故选B

.108.如图,在▱ABCD中,E为AD的三等分点,AE=AD,连接BE交AC于点F,AC=12,则AF为()A.4B.4.8C.5.2D.6【考点】S4:平行线分线段成比例;L5:平行四边形的性质.【分析】根据平行四边形的对边相等可得AD=BC,然后求出AE=AD=BC,再根据平行线分线段成

比例定理求出AF、FC的比,然后求解即可.【解答】解:在▱ABCD中,AD=BC,AD∥BC,∵E为AD的三等分点,∴AE=AD=BC,∵AD∥BC,∴==,∵AC=12,∴AF=×12=4.8.故选B.9.星期天

,小明从家出发,以15千米/小时的速度骑车去郊游,到达目的地休息一段时间后原路返回,已知小明行驶的路程s(千米)与时间t(小时)之间的函数关系如图所示,则小明返程的速度为()A.15千米/小时B.10千米/小时C.6千米/小时D.无法确定11【考点】E6:函数的图象.【分析】由往返路程相同结合

速度=路程÷时间,即可求出小明返程的速度,此题得解.【解答】解:15×1÷(3.5﹣2)=10(千米/小时),∴小明返程的速度为10千米/小时.故选B.10.如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC

,OD与半圆O交于点E,则下列结论中不一定正确的是()A.AC⊥BCB.BE平分∠ABCC.BE∥CDD.∠D=∠A【考点】MC:切线的性质.【分析】连接OC.根据圆的直径的性质、切线的性质、平行线的性质可以判定A、B、D正确.【解答】解:连接OC.∵AB是直径,∴∠ACB=90°,∴AC⊥BC

,故A正确,∵OD∥BC,∴∠EBC=∠BEO,∵OE=OB,∴∠OEB=∠OBE,∴∠EBO=∠EBC,∴BE平分∠ABC,故B正确,∵DC是切线,∴DC⊥CO,12∴∠DCO=90°,∴∠D+∠DOC=90°,∵BC⊥AC,OD∥BC

,∴OD⊥AC,∵OA=OC,∴∠AOD=∠DOC,∴∠A+∠AOD=90°,∴∠A=∠D,故D正确.无法判断C正确,故选C.二、填空题(本小题共5小题,每小题3分,共15分)11.计算:2﹣2﹣=﹣.【考点】2C:实数的运算.【分析】原式利

用负整数指数幂法则,以及立方根定义计算即可得到结果.【解答】解:原式=﹣=﹣,故答案为:﹣12.写出一个二次函数解析式,使它的图象的顶点在y轴上:y=x2(答案不唯一).【考点】H3:二次函数的性质.【分析】根据二

次函数的图象的顶点在y轴上,则b=0,进而得出答案.【解答】解:由题意可得:y=x2(答案不唯一).故答案为:y=x2(答案不唯一).1313.课外活动中,九(1)班准备把全班男生随机分成两个小组进行拔河比赛,

则甲、乙、丙三位同学恰好被分在同一小组的概率为.【考点】X6:列表法与树状图法.【分析】根据题意画出树状图然后依据树状图分析所有等可能的出现结果,根据概率公式即可求出该事件的概率.【解答】解:设两个小组分别为A,B,如图所示,共有8种等可能的结果:AAA,AAB

,ABA,ABB,BAA,BAB,BBA,BBB;∵甲、乙、丙三位同学被分在同一小组的有6种情况,∴=,故答案为:.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积

为π﹣2.【考点】MO:扇形面积的计算;KW:等腰直角三角形.【分析】空白处的面积等于△ABC的面积减去扇形BCD的面积的2倍,阴影部分的面积等于△ABC的面积减去空白处的面积即可得出答案.【解答】解:∵∠ACB=90°,AC=BC=2,∴S△

ABC=×2×2=2,S扇形BCD==π,14S空白=2×(2﹣π)=4﹣π,S阴影=S△ABC﹣S空白=2﹣4+π=π﹣2,故答案为π﹣2.15.如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠

,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为或.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【

分析】设AE=A′E=x,则DE=ED′=15﹣x,只要证明BD′=ED′=15﹣x,在Rt△BA′D′中,根据BD′2=BA′2+A′D′2,列出方程即可解决问题.【解答】解:∵把△ABE沿BE折叠,使点A落在点A′处,∴AE=AE′,AB=

BE′=8,∠A=∠BE′E=90°,∵把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,∴DE=D′E,DF=D′F,∠ED′F=∠D=90°,设AE=A′E=x,则DE=ED′=15﹣x,∵AD∥BC,∴∠1=∠EBC

,∵∠1=∠2,∴∠2=∠EBD′,∴BD′=ED′=15﹣x,∴A′D′=15﹣2x,在Rt△BA′D′中,∵BD′2=BA′2+A′D′2,∴82+(15﹣2x)2=(15﹣x)2,15解得x=,∴AE=或.三、解答题(本题共8小题,共75分.)16.先化简

,再求值:(﹣)÷,其中实数a,b满足(a﹣2)2+|b﹣2a|=0.【考点】6D:分式的化简求值;16:非负数的性质:绝对值;1F:非负数的性质:偶次方.【分析】根据分式的减法和除法可以化简题目中的式子,根据(a﹣2)2+|b﹣

2a|=0可以求得a、b的值,然后代入化简后的式子即可解答本题.【解答】解:(﹣)÷====,∵(a﹣2)2+|b﹣2a|=0,∴,得,∴原式=.17.每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果

绘制成如下两16幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是100;(2)补全频数分布直方图,求扇形图中“6吨﹣﹣9吨”部分的圆心角的度数;(3)

如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?【考点】V8:频数(率)分布直方图;V3:总体、个体、样本、样本

容量;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由3~6吨的户数及其百分比可得样本容量;(2)总户数减去其他分组的户数之和求得6~9吨的户数,即可补全直方图,用6~9吨的户数所占比例乘以360度可得圆心角度数;(3)总户数乘以样本中3~12吨的户数所占比例即可得.【解答】解

:(1)此次抽样调查的样本容量是10÷10%=100,故答案为:100;(2)6~9吨的户数为100﹣(10+38+24+8)=20(户),补全频数分布直方图如下:17扇形图中“6吨﹣﹣9吨”部分的圆心角的度数为360°×=

72°;(3)1000×=680,答:该社区约有680户家庭的用水全部享受基本价格.18.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.(

1)试判断四边形DEFG的形状,并说明理由;(2)填空:①若AB=3,当CA=CB时,四边形DEFG的面积是;②若AB=2,当∠CAB的度数为75°或15°时,四边形DEFG是正方形.【考点】MA:三角形的外接圆与外心;LF:正方形的判定;LN:中点四边形.【分析】(1)只要证明DG=

EF,DG∥EF即可解决问题;(2)①只要证明四边形DEFG是矩形即可解决问题;②分点C在优弧AB或劣弧AB上两种切线讨论即可;【解答】解:(1)四边形DEFG是平行四边形.∵点D、E、F、G分别是CA、OA、OB、CB的中点,∴DG∥AB,DG=

AB,EF∥AB,EF=AB,∴DG∥EF,DG=EF,∴四边形DEFG是平行四边形;(2)①连接OC.∵CA=CB,∴=,∴DG⊥OC,18∵AD=DC,AE=EO,∴DE∥OC,DE=OC=1,同理EF=AB=,∴DE⊥DG,∴

四边形DEFG是矩形,∴四边形DEFG的面积=.故答案为;②当C是优弧AB的中点时,四边形DEFG是正方形,此时∠CAB=75°,当C是劣弧AB的中点时,四边形DEFG是正方形,此时∠CAB=15°,故答案为75°或15°.19.某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在

河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)【考点】TB:解直角三角形的应用﹣方向角问

题.【分析】记河南岸为BE,延长CA交BE于点D,则CD⊥BE,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中利用三角函数即可列方程求解.【解答】解:如图,记河南岸为BE,延长CA交BE于点D,则CD⊥BE.19由题意知,∠

DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中,=tan∠DCB,∴≈0.65,解得x≈37.答:这段河的宽约为37米.20.如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点.(1)求b,k的值;(2)在第一象

限内,当一次函数y=﹣x+b的值大于反比例函数y=的值时,直接写出自变量x的取值范围;(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.【考点】G8:反比例函数与一次函数的交点问题;A3:一元二次方程的解;F

9:一次函数图象与几何变换.【分析】(1)根据直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点,20即可得到b,k的值;(2)运用数形结合思想,根据图象中,直线与双曲线的上下位置关系,即可得到自变量x的取值范

围;(3)将直线y=﹣x+5向下平移m个单位后解析式为y=﹣x+5﹣m,依据﹣x+5﹣m=,可得△=(m﹣5)2﹣16,当直线与双曲线只有一个交点时,根据△=0,可得m的值.【解答】解:(1)∵直线y=﹣x+b过点B(4,1),∴1=﹣4+b,解得b=5;∵反比例函数y=的图象过点B(4,1),

∴k=4;(2)由图可得,在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=的值时,1<x<4;(3)将直线y=﹣x+5向下平移m个单位后解析式为y=﹣x+5﹣m,∵直线y=﹣x+5﹣m与双曲线y=只有一个交点,令﹣x+5﹣m=,整理得x

2+(m﹣5)x+4=0,∴△=(m﹣5)2﹣16=0,解得m=9或1.21.某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,

每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为50元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元

,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?【考点】HE:二次函数的应用.21【分析】(1)根据销售单价定为60

元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克,可以求得某天售出该化工原料40千克,当天的销售单价;(2)①根据该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平

衡,可以列出相应的方程,从而可以求得原料的进价;②根据题意可以求得每天的最大利润,从而可以求得少需多少天才能还清借款.【解答】解:(1)设某天售出该化工原料40千克时的销售单价为x元/千克,(60﹣x)×2+20=40,解得,x=50,故答案为:50;(2)①设这

种化工原料的进价为a元/千克,当销售价为46元/千克时,当天的销量为:20+(60﹣46)×2=48(千克),则(46﹣a)×48=108+90×2,解得,a=40,即这种化工原料的进价为40元/千克;②设公司某天的销售单价为x元/千克,每天的收入为y元

,则y=(x﹣40)[20+2(60﹣x)]=﹣2(x﹣55)2+450,∴当x=55时,公司每天的收入最多,最多收入450元,设公司需要t天还清借款,则t≥10000,解得,t≥,∵t为整数,∴t=62.即公司至少需62天才能还清借款.22.如图1,四

边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接22DE,BG.(1)发现①线段DE、BG之间的数量关系是DE=BG;②直线DE、BG之间的位置关系是DE⊥BG.(2)探究如图2,将正方形AEFG绕点A逆时针旋转,(1)中的结论是否仍然成立?

若成立,请给出证明;若不成立,请说明理由.(3)应用如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD所在直线距离的最大值和最小值.【考点】LO:四边形综合题.【分析】(1)

证明△AED≌△AGB可得出两个结论;(2)①根据正方形的性质得出AE=AG,AD=AB,∠EAG=∠DAB=90°,求出∠EAD=∠GAB,根据SAS推出△EAD≌△GAB即可;②根据全等三角形的性质得出∠GBA=∠EDA,求出∠D

HB=90°即可;(3)先确定点P到CD所在直线距离的最大值和最小值的位置,再根据图形求解.【解答】解:(1)发现①线段DE、BG之间的数量关系是:DE=BG,理由是:如图1,∵四边形ABCD是正方形,∴AB=AD

,∠BDA=90°,∴∠BAG=∠BAD=90°,∵四边形AEFG是正方形,∴AE=AG,∴△AED≌△AGB,∴DE=BG;②直线DE、BG之间的位置关系是:DE⊥BG,23理由是:如图2,延长DE

交BG于Q,由△AED≌△AGB得:∠ABG=∠ADE,∵∠AED+∠ADE=90°,∠AED=∠BEQ,∴∠BEQ+∠ABG=90°,∴∠BQE=90°,∴DE⊥BG;故答案为:①DE=BG;②DE⊥BG;(2)探究(1)中的结论仍然成立,理由是:①如图3,∵四边形AEFG

和四边形ABCD是正方形,∴AE=AG,AD=AB,∠EAG=∠DAB=90°,∴∠EAD=∠GAB=90°+∠EAB,在△EAD和△GAB中,,∴△EAD≌△GAB(SAS),∴ED=GB;②ED⊥GB,理由是:∵△EAD≌△GAB,∴∠GBA=∠EDA,∵∠AMD+∠ADM=90°,∠BMH=

∠AMD,∴∠BMH+∠GBA=90°,∴∠DHB=180°﹣90°=90°,∴ED⊥GB;(3)应用将正方形AEFG绕点A逆时针旋转一周,即点E和G在以A为圆心,以2为半径的圆上,过P作PH⊥CD于H,①当P与F重

合时,此时PH最小,如图4,在Rt△AED中,AD=4,AE=2,24∴∠ADE=30°,DE==2,∴DF=DE﹣EF=2﹣2,∵AD⊥CD,PH⊥CD,∴AD∥PH,∴∠DPH=∠ADE=30°,cos30°==,∴PH=(2﹣2)=3﹣;②∵DE⊥BG,∠BA

D=90°,∴以BD的中点O为圆心,以BD为直径作圆,P、A在圆上,当P在的中点时,如图5,此时PH的值最大,∵AB=AD=4,由勾股定理得:BD=4,则半径OB=OP=2∴PH=2+2.综上所述,点P到CD所在直线距离的最

大值是2+2,最小值是3﹣.2523.如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B(﹣1,0),与y轴交于点C(0,4),作直线AC.(1)求抛物线解析式;(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等,设点P的纵坐标

为m,求m的值;(3)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C、M、N、Q为顶点的四边形是菱形,请直接写出点Q的坐标.26【考点】HF:二次函数综合题.【分析】(1)先利用抛物线的对称性得到A(3,0),则可设交点式y=a(x+1)(x﹣3),然

后把C点坐标代入求出a即可;(2)先利用待定系数法其出直线AC的解析式为y=﹣x+4;令对称轴与直线AC交于点D,与x轴交于点E,作PH⊥AD于H,如图1,易得D(1,),利用勾股定理计算出AD=,设P(1,m

),则PD=﹣m,PH=PE=|m|,证明△DPH∽△DAE,利用相似比得到=,然后解方程可得到m的值;(3)设Q(t,﹣t2+t+4)(0<t<4),讨论:当CM为对角线时,四边形CQMN为菱形,如图2,根据菱形的性质判定点N和Q关于y轴对称,则N(﹣t,﹣t2

+t+4),然后把N(﹣t,﹣t2+t+4)代入y=﹣x+4得t的方程,从而解方程求出t得到此时Q点坐标;当CM为菱形的边时,四边形CNQM为菱形,如图3,利用菱形的性质得NQ∥y轴,NQ=NC,则N(t,﹣t+4),所

以NQ=﹣t2+4t,再根据两点间的距离公式计算出CN=t,所以﹣t2+4t=t,从而解方程求出t得到此时Q点坐标.【解答】解:(1)∵点A与点B(﹣1,0)关于直线x=1对称,∴A(3,0),设抛物线解析式为y=a(x+1)(x﹣3),27把C(0,

4)代入得a•1•(﹣3)=4,解得a=﹣,∴抛物线解析式为y=﹣(x+1)(x﹣3),即y=﹣x2+x+4;(2)设直线AC的解析式为y=kx+p,把A(3,0),C(0,4)代入得,解得,∴直线AC的解析式为y=﹣x+4;令对称轴与直线AC交

于点D,与x轴交于点E,作PH⊥AD于H,如图1,当x=1时,y=﹣x+4=,则D(1,),∴DE=,在Rt△ADE中,AD==,设P(1,m),则PD=﹣m,PH=PE=|m|,∵∠PDH=∠ADE,∴△DPH∽△DAE,∴=,即=,解

得m=1或m=﹣4,即m的值为1或﹣4;(3)设Q(t,﹣t2+t+4)(0<t<4),当CM为对角线时,四边形CQMN为菱形,如图2,则点N和Q关于y轴对称,∴N(﹣t,﹣t2+t+4),把N(﹣t,﹣t2+t+4)代入y=﹣x+4得t+4=﹣t2+t+4,解得t1=0(舍去),t2=1

,此时Q点坐标为(1,);当CM为菱形的边时,四边形CNQM为菱形,如图3,则NQ∥y轴,NQ=NC,∴N(t,﹣t+4),∴NQ=﹣t2+t+4﹣(﹣t+4)=﹣t2+4t,28而CN2=t2+(﹣t+4﹣4)2=t

2,即CN=t,∴﹣t2+4t=t,解得t1=0(舍去),t2=,此时Q点坐标为(,),综上所述,点Q的坐标为(1,)或(,).

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 112
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?