(江苏版)2022年中考数学模拟练习卷11(含答案)

DOC
  • 阅读 25 次
  • 下载 0 次
  • 页数 18 页
  • 大小 329.000 KB
  • 2022-11-21 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
(江苏版)2022年中考数学模拟练习卷11(含答案)
可在后台配置第一页与第二页中间广告代码
(江苏版)2022年中考数学模拟练习卷11(含答案)
可在后台配置第二页与第三页中间广告代码
(江苏版)2022年中考数学模拟练习卷11(含答案)
可在后台配置第三页与第四页中间广告代码
(江苏版)2022年中考数学模拟练习卷11(含答案)
(江苏版)2022年中考数学模拟练习卷11(含答案)
还剩5页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 18
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】(江苏版)2022年中考数学模拟练习卷11(含答案).doc,共(18)页,329.000 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-31398.html

以下为本文档部分文字说明:

中考数学模拟练习卷一.选择题(共9小题,满分24分)1.如图所示的图案中,是轴对称图形而不是中心对称图形的个数是()A.4个B.3个C.2个D.1个2.(3分)若(ambn)3=a9b15,则m、n的值分别为()A.9;5B.3;5C.5;3D.6;123.(3分)如图为反比例函数y=的图象,则k

等于()A.B.C.10D.﹣104.(3分)下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A

.0B.1C.2D.35.(3分)若实数a、b满足a2﹣8a+5=0,b2﹣8b+5=0,则的值是()A.﹣20B.2C.2或﹣20D.6.(3分)如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60πB.70πC.90πD.1

60π7.(3分)如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM

+∠ANM=∠MOB;⑤AE=MF.[来源:学科网]其中正确结论的个数是()A.2B.3C.4D.58.(3分)已知点M(n,﹣n)在第二象限,过点M的直线y=kx+b(0<k<1)分别交x轴、y轴于点A,

B,过点M作MN⊥x轴于点N,则下列点在线段AN的是()A.((k﹣1)n,0)B.((k+)n,0))C.(,0)D.((k+1)n,0)9.(3分)已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③b2>(a+c)

2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有()A.4个B.3个C.2个D.1个二.填空题(共7小题,满分21分,每小题3分)10.(3分)函数中,自变量x取值范围是.11.(3分)在小学阶段,我们知道可以将一个分数拆分成两个分数的和(差

)的形式,例如,=.类似地,我们也可以把一个较复杂的分式拆分成两个较简单,并且分子次数小于分母次数的分式的和或者差的形式.例如=,仿照上述方法,若分式可以拆分成的形式,那么(B+1)﹣(A+1)=.12.(3分)如图所示的是某班全体学生在课

外活动中参加各种兴趣小组的情况统计图,那么从这个班中任意挑选一人,恰为参加美术兴趣小组的学生的概率是%.13.(3分)科学家发现一种病毒的直径为0.000104米,用科学记数法表示为米.14.(3分)某兴趣小组成员的年龄统计(不完整)如下表所示,已知他们的平均年龄是14.5岁

,那么年龄为14岁的人数是.年龄/岁13141516人数15115.(3分)如图,将一块实心三角板和实心半圆形量角器按图中方式叠放,三角板一直角边与量角器的零刻度线所在直线重合,斜边与半圆相切,重叠部分的量角器弧对应的圆心角(∠AOB

)为120°,BC的长为2,则三角板和量角器重叠部分的面积为.16.(3分)如图,已知△ABC内接于⊙O,CD是⊙O的切线与半径OB的延长线交于点D,∠A=30°,求∠BCD的度数.三.解答题(共8小题,满分

50分)17.(8分)计算:4cos45°﹣+(π﹣)0+(﹣1)2.18.(8分)先化简,再求值:(+)•,其中x=﹣3.19.(8分)如图,OA,OB是⊙O的两条半径,OA⊥OB,C是半径OB上的一动点,连接AC并延长交

⊙O于D,过点D作直线交OB延长线于E,且DE=CE,已知OA=8.(1)求证:ED是⊙O的切线;(2)当∠A=30°时,求CD的长.20.(8分)如图,已知直线y=﹣2x,经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y=(k≠

0)的图象上.(1)求点P′的坐标;(2)求反比例函数的解析式,并直接写出当y>1时自变量x的取值范围.21.(8分)诸暨某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”

国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售件,每件盈利元;(用x的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000

元,可能吗?请说明理由.22.(10分)如图,海中有一小岛P,在距小岛P的海里范围内有暗礁,一轮船自西向东航行,它在A处时测得小岛P位于北偏东60°,且A、P之间的距离为32海里,若轮船继续向正东方向航行,轮船有无触礁危险?请通过计算加以说明.如果有危险,轮船自A

处开始至少沿东偏南多少度方向航行,才能安全通过这一海域?23.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)

在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?24.如图1,正方形ABCD的边长为4,把三角板的直角顶点放置BC中点E处,三角板绕点E旋转,三角板的两边分别交边AB、CD于

点G、F.(1)求证:△GBE∽△GEF.(2)设AG=x,GF=y,求Y关于X的函数表达式,并写出自变量取值范围.(3)如图2,连接AC交GF于点Q,交EF于点P.当△AGQ与△CEP相似,求线段AG的

长.参考答案与试题解析一.选择题(共9小题,满分24分)1.【解答】解:第一个图案是轴对称图形,而不是中心对称图形.符合题意;其余三个图案既是中心对称图形,又是轴对称图形.不符合题意.故是轴对称图形而不是中心对称图

形的个数是1个.故选:D.2.【解答】解:∵(ambn)3=a9b15,∴a3mb3n=a9b15,∴3m=9,3n=15,∴m=3,n=5,故选:B.3.【解答】解:将点(﹣2,﹣5)代入y=,得k=1

0.故选:C.4.【解答】解:(1)(3)属于随机事件;(4)是不可能事件,属于确定事件;(2)是必然事件,属于确定事件;故属于确定事件的个数是2,故选:C.5.【解答】解:①当a=b时,原式=2;②当a≠b时,根据实数a、b满足a2﹣8a+5=0,b

2﹣8b+5=0,即可看成a、b是方程x2﹣8x+5=0的解,∴a+b=8,ab=5.则==,把a+b=8,ab=5代入得:[来源:学*科*网Z*X*X*K]==﹣20.综上可得的值为2或﹣20.故选:C

.6.【解答】解:观察三视图发现该几何体为空心圆柱,其内圆半径为3,外圆半径为4,高为10,所以其体积为10×(42π﹣32π)=70π,故选:B.7.【解答】解:∵MN是⊙O的直径,AB⊥MN,∴AD=BD,=,∠MAN=90°(①②③正确)

∵=,∴==,∴∠ACM+∠ANM=∠MOB(④正确)∵∠MAE=∠AME,∴AE=ME,∠EAF=∠AFM,∴AE=EF,∴AE=MF(⑤正确).正确的结论共5个.故选:D.8.【解答】解:如图所示,过M

作MC⊥y轴于C,∵M(n,﹣n),MN⊥x轴于点N,∴C(0,﹣n),N(n,0),把M(n,﹣n)代入直线y=kx+b,可得b=﹣n﹣kn,∴y=kx﹣n(1+k),令x=0,则y=﹣n(1+k),即B(0,

﹣n(1+k)),∴﹣n(1+k)>﹣n,∴n(1+k)<n,令y=0,则0=kx﹣n(1+k),解得x==n(),即A(n(),0),∵0<k<1,n<0,∴n()<n(1+k)<n,∴点((k+1)n,0)在线段AN上.故选:D.9.【解答】解:∵抛物线开口向上

,∴a>0,∵﹣<0,∴b>0,∵抛物线交y轴于负半轴,∴c<0,∴abc<0,故①正确,∵﹣<﹣1,a>0,∴b>2a,∴2a﹣b<0,故②正确,∵x=1时,y>0,∴a+b+c>0,∴a+c>﹣b,∵x=﹣1时,y<0,∴a﹣b+c<0,∴

a+c<b,∴b2>(a+c)2,故③正确,∵点(﹣3,y1),(1,y2)都在抛物线上,观察图象可知y1<y2,故④错误.故选:B.二.填空题(共7小题,满分21分,每小题3分)10.【解答】解:根据题意,得x﹣4≠0,解得x≠

4.故答案为x≠4.11.【解答】解:=+==,∵=,∴=,则,解得:,所以(B+1)﹣(A+1)=3﹣2=,故答案为:.12.【解答】解:观察这个图可知:标有一等奖区域的面积占总圆面面积的10%.故答案为:10.13.【解答】解

:0.000104=1.04×10﹣4,故答案为:1.04×10﹣4.14.【解答】解:设年龄为14岁的人数是x,则(13+14x+15×5+16)÷(1+x+5+1)=14.5,解得x=5.故答案为:5

.15.【解答】解:∵∠AOB=120°,∴∠BOC=60°∵∠OCB=90°,BC=2,∴OC==2,OB=4,∴重叠部分的面积=+×2×2=+2,故答案为:+2.16.【解答】解:如图,连接OC,∵CD是⊙O的切

线,∴OC⊥CD,∴∠OCD=90°,∵∠A=30°,∴∠COB=2∠A=60°,∵OC=OB,∴△OBC是等边三角形,∴∠OCB=60°,∴∠BCD=90°﹣∠OCB=30°.三.解答题(共8小题,满分50分)17.【解答】解:原式=4×﹣2+1+1=2.18

.【解答】解:原式=•=﹣,当x=﹣3时,原式=﹣.19.【解答】(1)证明:如图连接OD.∵OA=OD,∴∠A=∠ODA,∵OA⊥OB,∴∠AOB=90°,∴∠A+∠ACO=90°,∵ED=EB,∴∠EDB=

∠EBD=∠ACO,∴∠ODA+∠EDC=90°,∴OD⊥DE,∴DE是⊙O的切线.(2)在Rt△AOC中,∵OA=8,∠A=30°,∴OC=OA•tan30°=,∵OA=OD,∴∠ODA=∠A=30°,∠DOA=120°,∠DOC=30°,[来源:学科网ZXXK]∴∠DOC=∠ODC

=30°,[来源:学_科_网]∴CD=OC=.20.【解答】解:(1)将P(﹣2,a)代入y=﹣2x得a=﹣2×(﹣2)=4,∴P′(2,4);(2)将P′(2,4)代入y=得4=,解得k=8,∴反比例函数的解析式为y=,∴当y>1时自变量x的

取值范围是x<8.[来源:Zxxk.Com]21.【解答】解:(1)设每件童装降价x元时,每天可销售20+2x件,每件盈利40﹣x元,故答案为:(20+2x),(40﹣x);(2)根据题意,得:(20+2x)(40﹣x

)=1200解得:x1=20,x2=10答:每件童装降价20元或10元,平均每天赢利1200元;(3)不能,∵(20+2x)(40﹣x)=2000此方程无解,故不可能做到平均每天盈利2000元.22.【解答】解:过P作PB⊥AM于B,在Rt△APB中,∵∠PA

B=30°,∴PB=AP=×32=16海里,∵16<16,故轮船有触礁危险.为了安全,应该变航行方向,并且保证点P到航线的距离不小于暗礁的半径16海里,即这个距离至少为16海里,设安全航向为AC,作PD⊥AC于点D,由题意得,AP=32海

里,PD=16海里,∵sin∠PAC===,∴在Rt△PAD中,∠PAC=45°,∴∠BAC=∠PAC﹣∠PAB=45°﹣30°=15°.答:轮船自A处开始至少沿南偏东75°度方向航行,才能安全通过这一海域.23.【解答】解:(1)当y=15时,1

5=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x1=0,x2=4,∵4﹣0=4,∴在飞行

过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.24.【解答】解:如图1,

延长FE交AB的延长线于F',∵点E是BC的中点,∴BE=CE=2,∵四边形ABCD是正方形,∴AB∥CD,∴∠F'=∠CFE,在△BEF'和△CEF中,,∴△BEF'≌△CEF,∴BF'=CF,EF'=EF,∵

∠GEF=90°,∴GF'=GF,∴∠BGE=∠EGF,∵∠GBE=∠GEF=90°,∴△GBE∽△GEF;(2)∵∠FEG=90°,∴∠BEG+∠CEF=90°,∵∠BEG+∠BGE=90°,∴∠BGE=∠CEF,∵∠EBG=∠C

=90°,∴△BEG∽△CFE,∴,由(1)知,BE=CE=2,∵AG=x,∴BG=4﹣x,∴,∴CF=,由(1)知,BF'=CF=,由(1)知,GF'=GF=y,∴y=GF'=BG+BF'=4﹣x+当CF=4时,即:=4,∴x=3,(0≤x≤3),即:y

关于x的函数表达式为y=4﹣x+(0≤x≤3);(3)∵AC是正方形ABCD的对角线,∴∠BAC=∠BCA=45°,∵△AGQ与△CEP相似,∴①△AGQ∽△CEP,∴∠AGQ=∠CEP,由(2)知,∠CEP=∠BGE,∴∠AGQ=∠B

GE,由(1)知,∠BGE=∠FGE,∴∠AGQ=∠BGQ=∠FGE,∴∠AGQ+∠BGQ+∠FGE=180°,∴∠BGE=60°,∴∠BEG=30°,在Rt△BEG中,BE=2,∴BG=,∴AG=AB﹣BG

=4﹣,②△AGQ∽△CPE,∴∠AQG=∠CEP,∵∠CEP=∠BGE=∠FGE,∴∠AQG=∠FGE,∴EG∥AC,∴△BEG∽△BCA,∴,∴,∴BG=2,∴AG=AB﹣BG=2,即:当△AGQ与△CEP相似,线段AG的长为2或4﹣.

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 112
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?