2021年高中数学人教版必修第一册:第3章《函数的概念与性质》精品课件 (含答案)

PPT
  • 阅读 39 次
  • 下载 0 次
  • 页数 35 页
  • 大小 928.500 KB
  • 2022-11-21 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
2021年高中数学人教版必修第一册:第3章《函数的概念与性质》精品课件 (含答案)
可在后台配置第一页与第二页中间广告代码
2021年高中数学人教版必修第一册:第3章《函数的概念与性质》精品课件 (含答案)
可在后台配置第二页与第三页中间广告代码
2021年高中数学人教版必修第一册:第3章《函数的概念与性质》精品课件 (含答案)
可在后台配置第三页与第四页中间广告代码
2021年高中数学人教版必修第一册:第3章《函数的概念与性质》精品课件 (含答案)
2021年高中数学人教版必修第一册:第3章《函数的概念与性质》精品课件 (含答案)
还剩10页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 35
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】2021年高中数学人教版必修第一册:第3章《函数的概念与性质》精品课件 (含答案).ppt,共(35)页,928.500 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-31240.html

以下为本文档部分文字说明:

人教2019版必修第一册第三章函数的概念与性质章末总结教学目标及核心素养教学目标1.掌握函数的概念;2.了解分段函数,会画分段函数的图像;3.理解函数性质并且熟练运用;4.能用函数与方程的思想解决实际问题.核心素养a.数学抽象:函数的概念;b.逻辑推理:函数性质的由来;c.数学

运算:求定义域、值域、函数解析式等;d.直观想象:抽象函数解不等式;e.数学建模:通过建立函数模型,借助函数与方程的思想解决实际问题.专题一函数概念主题串讲方法提炼·总结升华【跟踪训练1】题型二分段函数解题技巧1.求分段函数的函数值的方法(1)确定要求值的自变量属

于哪一段区间.(2)代入该段的解析式求值,直到求出值为止.当出现的形式时,应从内到外依次求值.2.求某条件下自变量的值的方法先假设所求的值在分段函数定义区间的各段上,然后相应求出自变量的值,切记代入检

验.3.作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.【跟踪训练2】专题三函数的性质应用(2)若f(x)满足f(-x)=f(x),且

f(x)在(-∞,-1]上是增函数,则()解析:∵f(-x)=f(x),∴f(2)=f(-2),答案:D解题技巧应用函数的单调性与奇偶性判断函数值的大小时,先利用函数的奇偶性将自变量转化到同一个单调区间上,再根据函数的单调性对函数值的大小作出比较.【跟踪训练3】题型四

幂函数【例4】(1)函数f(x)=(m2-m-5)xm-1是幂函数,且当x∈(0,+∞)时,f(x)是增函数,试确定m的值.分析:由f(x)=(m2-m-5)xm-1是幂函数,且当x>0时是增函数,可先利用幂函数的定义求出m的值,再利用单调性确定m的值.解:根据幂函数的

定义,得m2-m-5=1,解得m=3或m=-2.当m=3时,f(x)=x2在(0,+∞)上是增函数;当m=-2时,f(x)=x-3在(0,+∞)上是减函数,不符合要求.故m=3.(2)已知函数y=xa,y=xb,y=xc的

图象如图所示,则a,b,c的大小关系为()A.c<b<aB.a<b<cC.b<c<aD.c<a<b答案:A解析:由幂函数的图象特征,知c<0,a>1,0<b<1.故c<b<a.解题技巧1.判断一个函数是否为幂函数的依据是该函数是否为

y=xα(α为常数)的形式,即:(1)系数为1;(2)指数为常数;(3)后面不加任何项.反之,若一个函数为幂函数,则该函数必具有这种形式.2.对于函数y=xα(α为常数)而言,其图象有以下特点:(1)恒过点(1,1),且不过第四象限.(2)当x∈(0,1)时,指数越大,幂函

数图象越靠近x轴(简记为“指大图低”);当x∈(1,+∞)时,指数越大,幂函数的图象越远离x轴(简记为“指大图高”).(3)由幂函数的图象确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图象(类似于y=x-1或y=,y=x3)来判断.(4)当α>0时,

幂函数的图象在区间(0,+∞)上都是增函数;当α<0时,幂函数的图象在区间(0,+∞)上都是减函数.(1)如果幂函数y=(m2-3m+3)的图象不过原点,求实数m的取值.解:由幂函数的定义得m2-3m+3=1,解得m=1或m=2;当m=1时,m2-m-2=-2,函

数为y=x-2,其图象不过原点,满足条件;当m=2时,m2-m-2=0,函数为y=x0,其图象不过原点,满足条件.综上所述,m=1或m=2.【跟踪训练4】(2)如图所示,曲线C1与C2分别是函数y=xm和y=xn在第一象限内的图象,则下列结论正确的是()A.n<

m<0B.m<n<0C.n>m>0D.m>n>0解析:画出直线y=x0的图象,作出直线x=2,与三个函数图象交于点(2,20),(2,2m),(2,2n).由三个点的位置关系可知,n<m<0.故选A.答案:A题型五函数模型的

应用【例5】某水果批发商销售每箱进价为40元的苹果,假设每箱售价不得低于50元且不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱.价格每提高1元,平均每天少销售3箱.①求平均每天的销售量y

(箱)与销售单价x(元/箱)之间的函数关系式;②求该批发商平均每天的销售利润w(元)与销售单价x(元/箱)之间的函数关系式;③当每箱苹果的售价为多少元时,可以获得最大利润?最大利润是多少?解:①根据题意,得y=

90-3(x-50),化简,得y=-3x+240(50≤x≤55,x∈N).②因为该批发商平均每天的销售利润=平均每天的销售量×每箱销售利润.所以w=(x-40)(-3x+240)=-3x2+360x-9600(50≤x

≤55,x∈N).③因为w=-3x2+360x-9600=-3(x-60)2+1200,所以当x<60时,w随x的增大而增大.又50≤x≤55,x∈N,所以当x=55时,w有最大值,最大值为1125.所

以当每箱苹果的售价为55元时,可以获得最大利润,且最大利润为1125元.解题技巧1.一次函数模型的应用利用一次函数求最值,常转化为求解不等式ax+b≥0(或≤0).解答时,注意系数a的正负,也可以结合函数图象或其单调性来求最值.2.二次函数模型的应用构建二次函数模型解决最优问题时,可以利用配

方法、判别式法、换元法、讨论函数的单调性等方法求最值,也可以根据函数图象的对称轴与函数定义域的对应区间之间的位置关系讨论求解,但一定要注意自变量的取值范围.1、商店出售茶壶和茶杯,茶壶定价为每个20元,茶杯每个5元,该商店推出两种优惠办法:①买一个茶

壶赠一个茶杯;②按总价的92%付款.某顾客需购买茶壶4个,茶杯若干个(不少于4个),若购买茶杯x(个),付款y(元),试分别建立两种优惠办法中y与x之间的函数解析式,并讨论该顾客买同样多的茶杯时,两种办法哪一种更优惠?【跟踪训练5】解:由优惠办法①可得函数解

析式为y1=20×4+5(x-4)=5x+60(x≥4,且x∈N).由优惠办法②可得y2=(5x+20×4)×92%=4.6x+73.6(x≥4,且x∈N).y1-y2=0.4x-13.6(x≥4,且x∈N),令y1-

y2=0,得x=34.所以,当购买34个茶杯时,两种优惠办法付款相同;当4≤x<34时,y1<y2,即优惠办法①更省钱;当x>34时,y1>y2,优惠办法②更省钱.

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 111
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?