【文档说明】人教版数学八年级上册期末模拟试卷04(含答案).doc,共(18)页,300.000 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-30437.html
以下为本文档部分文字说明:
人教版数学八年级上册期末模拟试卷一、选择题1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.一个四边形,截一刀后得到新多边形的内角和将()A.增加180°B.减少180°C.不变D.以上三种情况都有可能3.满足下列哪种条件
时,能判定△ABC与△DEF全等的是()A.∠A=∠E,AB=EF,∠B=∠DB.AB=DE,BC=EF,∠C=∠FC.AB=DE,BC=EF,∠A=∠ED.∠A=∠D,AB=DE,∠B=∠E4.下列运算中,计算结果正确的是()A.a2•a3=a6B.(a2)3=a
5C.(a2b)2=a2b2D.a3+a3=2a35.在,,,,中,分式的个数是()A.1B.2C.3D.46.如图,把矩形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠C′BD一
定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC′一定是全等三角形7.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b
2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab+b28.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3B.4C.5D.69.等腰三角形一个外角等于110°,则
底角为()A.70°或40°B.40°或55°C.55°或70°D.70°10.多项式a2﹣9与a2﹣3a的公因式是()A.a+3B.a﹣3C.a+1D.a﹣111.如果把分式中的x、y都扩大到原来的10倍,则分式的值()
A.扩大100倍B.扩大10倍C.不变D.缩小到原来的12.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为
()A.B.C.D.二、填空题13.将0.00000034用科学记数法表示应为.14.已知4x2+mx+9是完全平方式,则m=.15.若m﹣n=4,则2m2﹣4mn+2n2的值为.16.若分式的值为零,则x=.17.若三角形的三边长
分别为3,4,x﹣1,则x的取值范围是.18.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有(填序号)19.将一副三角板如图叠放,则图中∠α
的度数为.20.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.21.若am=2,an=3,则a3m+2n=.22.已知﹣=5,则的值是.三、解答题23.(1)+3=(解方程)(2)x﹣x3(分解因式)24.先化简(1+)÷,再从1、2中选取一个适当的数代入求值.25
.如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点△A1,B1,C1的坐标(直接写答案):A1;B1;C1;(3)△A1B
1C1的面积为;(4)在y轴上画出点P,使PB+PC最小.26.如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=40°,∠DAE=15°,求∠C的度数.27.已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证
:AD=CE;(2)求证:AD和CE垂直.28.如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,DE=1cm,求BD的长.29.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60
天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单
独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案与试题解析一、精心选一选(每小题3分,共36分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条
直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4
个.故选:C.2.一个四边形,截一刀后得到新多边形的内角和将()A.增加180°B.减少180°C.不变D.以上三种情况都有可能【解答】解:∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能
是五边形,∴内角和可能减少180°,可能不变,可能增加180°.故选:D.3.满足下列哪种条件时,能判定△ABC与△DEF全等的是()A.∠A=∠E,AB=EF,∠B=∠DB.AB=DE,BC=EF,∠C=∠FC.AB=DE,BC=EF,∠A=∠ED.∠A=∠D,AB=DE,∠B=∠E
【解答】解:A、边不是两角的夹边,不符合ASA;B、角不是两边的夹角,不符合SAS;C、角不是两边的夹角,不符合SAS;D、符合ASA能判定三角形全等;仔细分析以上四个选项,只有D是正确的.故选:D.4.下列运算中,计算结果正确的是()A.a2•a3=a6B.(a
2)3=a5C.(a2b)2=a2b2D.a3+a3=2a3【解答】解:A、a2•a3=a5,故本选项错误;B、(a2)3=a6,故本选项错误;C、(a2b)2=a4b2,故本选项错误;D、a3+a3=2a3,正确.故选:D.5.在,,,,中,分式的个数是()A.1B
.2C.3D.4【解答】解:,,的分母中均不含有字母,因此它们是整式,而不是分式.,,分母中含有字母,因此是分式.故选:C.6.如图,把矩形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD
是等腰三角形,EB=EDB.折叠后∠ABE和∠C′BD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC′一定是全等三角形【解答】解:由题意得:△BC′D≌△BFD,∴DC′=DF,∠C′=∠C=90°;∠C′BD=∠CBD;又∵四边形ABCD为矩形,∴
∠A=∠F=90°;DE∥BF,AB=DF;∴∠EDB=∠FBD,DC′=AB;∴∠EDB=∠C′BD,∴EB=ED,△EBD为等腰三角形;在△ABE与△CDE中,∵,∴△ABE≌△C′DE(HL);又∵△EBD为等腰三角形,∴折叠后得到的图形是轴对称图形;综
上所述,选项A、C、D成立,∴下列说法错误的是B,故选:B.7.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a
﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab+b2【解答】解:由题意得:a2﹣b2=(a+b)(a﹣b).故选:A.8.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=
15,则CD的长为()A.3B.4C.5D.6【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=AB•DE=×10•DE=15,解得DE=3.故选:A.9.等腰三角形一个外角等于110°,则底角为()A.70°或40°B.40°
或55°C.55°或70°D.70°【解答】解:分为两种情况:①当顶角的外角是110°时,顶角是180°﹣110°=70°,则底角是×(180°﹣70°)=55°;②当底角的外角是110°时,底角是180°﹣110°=70°;即底角为55°或70°,故选:C.10.多项式a2﹣9与
a2﹣3a的公因式是()A.a+3B.a﹣3C.a+1D.a﹣1【解答】解:a2﹣9=(a﹣3)(a+3),a2﹣3a=a(a﹣3),故多项式a2﹣9与a2﹣3a的公因式是:a﹣3,故选:B.11.如果把分
式中的x、y都扩大到原来的10倍,则分式的值()A.扩大100倍B.扩大10倍C.不变D.缩小到原来的【解答】解:分别用10x,10y代替式子中的x、y得==,可见新分式与原分式相等.故选:C.12.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时
间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.【解答】解:设乘公交车平均每小时走x千米,根据题意可列方程为:=+,故选:D.二、细心填一填(每小题
3分,共30分)13.将0.00000034用科学记数法表示应为3.4×10﹣7.【解答】解:0.00000034=3.4×10﹣7,故答案为:3.4×10﹣7.14.已知4x2+mx+9是完全平方式,则m=±12.【解答】解:∵4x2+mx+9是完全平方式,
∴4x2+mx+9=(2x±3)2=4x2±12x+9,∴m=±12,m=±12.故答案为:±12.15.若m﹣n=4,则2m2﹣4mn+2n2的值为32.【解答】解:∵2m2﹣4mn+2n2=2(m﹣n)2∴当m﹣n=4时,原式=2×42=32.故答案是:
32.16.若分式的值为零,则x=﹣3.【解答】解:∵分式的值为零,∴,解得x=﹣3.故答案为:﹣3.17.若三角形的三边长分别为3,4,x﹣1,则x的取值范围是2<x<8.【解答】解:由三角形三边关系定理得:4﹣3<x﹣1<4+3,解得:2<x<
8,即x的取值范围是2<x<8.故答案为:2<x<8.18.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有①②③(填序号)【解答】解:①∵∠A+∠B=∠C
,∠A+∠B+∠C=180°,∴2∠C=180°,∠C=90°,则该三角形是直角三角形;②∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=90°,则该三角形是直角三角形;③∠A=90°﹣∠B,则∠A+∠B=90°,∠C=9
0°.则该三角形是直角三角形;④∠A=∠B=∠C,则该三角形是等边三角形.故能确定△ABC是直角三角形的条件有①②③.19.将一副三角板如图叠放,则图中∠α的度数为15°.【解答】解:由三角形的外角的
性质可知,∠α=60°﹣45°=15°,故答案为:15°.20.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2
=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.21.若am=2,an=3,则a3m+2n=72.【解答】解:∵am=2,an=3,∴a3m+2n=(am)3×(an)2=23×32=72.故答案为:72.22.已知﹣=5,则的
值是1.【解答】解:解法一:由已知﹣=5,∴a﹣b=﹣5ab,则=.解法二:将原式分子分母同时除以ab,===1.故答案为:1.三、解答题(共54分,要求:写出必要的解题步骤和说理过程)23.(8分)(1)+3=(解方程)(2)x﹣x3(分解因式)【解答】解:(1)方程的
两边同乘x﹣2,得1+3(x﹣2)=x﹣1,解得x=2.检验:把x=2代入x﹣2=0,即x=2是原分式方程的增根.则原方程无解;(2)x﹣x3=x(1﹣x2)=x(1﹣x)(1+x).24.(6分)先化简(1+)÷,再从1、2中选
取一个适当的数代入求值.【解答】解:原式=﹣•=﹣,当a=2时,原式=﹣.25.(8分)如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).[来源:学§科§网](1)在图中作出△ABC关于y轴
对称的△A1B1C1;(2)写出点△A1,B1,C1的坐标(直接写答案):A1(3,2);B1(4,﹣3);C1(1,﹣1);(3)△A1B1C1的面积为6.5;(4)在y轴上画出点P,使PB+PC最小.【解答】解:(1)如图所示:△A1B1
C1,即为所求;[来源:学科网](2)A1(3,2);B1(4,﹣3);C1(1,﹣1);故答案为:(3,2);(4,﹣3);(1,﹣1);(3)△A1B1C1的面积为:3×5﹣×2×3﹣×1×5﹣×2×3=6.5;(4)如图所示:P点即为所求.26.
(6分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=40°,∠DAE=15°,求∠C的度数.【解答】解:∵AD是BC边上的高,∴∠ADE=90°.∵∠ADE+∠AED+∠DAE=180°,∴∠AED=180°﹣∠ADE﹣∠DAE=180°﹣90°﹣15°=75°.∵∠
B+∠BAE=∠AED,∴∠BAE=∠AED﹣∠B=75°﹣40°=35°.∵AE是∠BAC平分线,∴∠BAC=2∠BAE=2×35°=70°.∵∠B+∠BAC+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣40°﹣70°=7
0°.27.(8分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.【解答】(1)证明:∵△ABC和△DBE是等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠AB
C﹣∠DBC=∠DBE﹣∠DBC,即∠ABD=CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE;(2)证明:延长AD分别交BC和CE于G和F,如图所示:∵△ABD≌△CBE,∴∠BAD=∠BCE,∵∠BA
D+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,又∵∠BGA=∠CGF,∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,∴∠AFC=∠ABC=90°,∴AD⊥CE.28.(8分)如图,在等腰△ABC中,∠BAC=120°,DE是
AC的垂直平分线,DE=1cm,求BD的长.【解答】解:∵等腰△ABC中,∠BAC=120°,∴∠B=∠C=×(180°﹣120°)=30°,连接AD,∵DE是AC的垂直平分线,∴AD=CD,∴∠C=∠CAD=30°,∴∠BAD
=∠BAC﹣∠CAD=120°﹣30°=90°,∵DE=1cm,DE⊥AC,∴CD=2DE=2cm,∴AD=2cm,在Rt△ABD中,BD=2AD=2×2=4cm.29.(10分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标
,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的
前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【解答】解:(1)设乙队单独完成需x天.根据题意,得:×20+(+)×24=1.解这个方程得:x=90.经检验,x=90是原方程的解
.∴乙队单独完成需90天.答:乙队单独完成需90天.(2)设甲、乙合作完成需y天,则有(+)×y=1.解得,y=36,①甲单独完成需付工程款为60×3.5=210(万元).②乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).答:在不超
过计划天数的前提下,由甲、乙合作完成最省钱.