2023年北师大版数学八年级上册《数据的离散程度》课时练习(含答案)

DOC
  • 阅读 250 次
  • 下载 0 次
  • 页数 7 页
  • 大小 115.158 KB
  • 2023-07-16 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
2023年北师大版数学八年级上册《数据的离散程度》课时练习(含答案)
可在后台配置第一页与第二页中间广告代码
2023年北师大版数学八年级上册《数据的离散程度》课时练习(含答案)
可在后台配置第二页与第三页中间广告代码
2023年北师大版数学八年级上册《数据的离散程度》课时练习(含答案)
可在后台配置第三页与第四页中间广告代码
在线阅读已结束,您可下载此文档阅读剩下的4 已有0人下载 下载文档3.00 元
/ 7
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】2023年北师大版数学八年级上册《数据的离散程度》课时练习(含答案).doc,共(7)页,115.158 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-280700.html

以下为本文档部分文字说明:

2023年北师大版数学八年级上册《数据的离散程度》课时练习一、选择题1.方差为2的是()A.1,2,3,4,5B.0,1,2,3,5C.2,2,2,2,2D.2,2,2,3,32.若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.

1B.6C.1或6D.5或63.某村引进甲、乙两种水稻良种,各选6块条件相同的试验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550千克/亩,方差分别为s甲2=141.7,s乙2=433.3,则产量稳定、

适合推广的品种为()A.甲、乙均可B.甲C.乙D.无法确定4.一组数据的方差为1.2,将这组数据扩大为原来的2倍,则所得新数据的方差为()A.1.2B.2.4C.1.44D.4.85.数据0、1、2、3、x的平均数是2,则这组数据的方差是()A

.2B.2C.10D.106.在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是S甲2=1.2,S乙2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是()A.甲比乙稳定B.乙比甲稳定C.甲和乙一样稳定D.甲、乙稳定性没法对比7.

某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大8.已知

A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当()A.平均数B.中位数C.众数D.方差二、填空题9.数据3,3,6,5,3的方差是.10.已知一组数据1,2,3,5,x,它的平均数是3,则这组

数据的方差是.11.一组数据2,4,a,7,7的平均数x=5,则方差s2=.12.一名学生军训时连续射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7.•则这名学生射击环数的方差是_________.13.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算

后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是.14.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是

.三、解答题15.甲进行了10次射击训练,平均成绩为9环,且前9次的成绩(单位:环)依次为:8,10,9,10,7,9,10,8,10.(1)求甲第10次的射击成绩;(2)求甲这10次射击成绩的方差;(3)乙在相同情况下也进行了10次射击训练,平均成绩为9环,方差为1.6环2,请问甲和乙哪

个的射击成绩更稳定?16.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10898109乙107101098(1)根据表格中的数据,分别计算甲、乙的平均

成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.17.甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全):运动员\环数\次数12345

甲1089108乙1099ab某同学计算出了甲的成绩平均数是9,方差是s2甲=15[(10-9)2+(8-9)2+(9-9)2+(10-9)2+(8-9)2]=0.8,请作答:(1)在图中用折线统计图将甲运动员的成绩表示出来;(2)若甲、乙射击成绩平均数都一样,则a+b=;(3)在(2)的条件

下,当甲比乙的成绩较稳定时,请列举出a,b的所有可能取值,并说明理由.18.某中学的国旗护卫队需从甲、乙两队中选择一队身高比较整齐的队员担任护旗手,每队中每个队员的身高(单位:cm)如下表及图1所示:甲队178177179179178178177178

177179图1分析数据:两组样本数据的平均数、中位数、众数、方差如表所示:整理、描述数据:平均数中位数众数方差甲队178178b0.6乙队178a178c(1)表中a=,b=,c=;(2)根据表格中的数据,你认为选择哪个队比较好?请说明理由.

19.某校为选拨参加2005年全国初中数学竞赛选手,进行了集体培训.在集训期间进行了10次测试,假设其中两位同学的测试成绩如下面的图表(如图3)所示:(1)根据图表中的信息填写下表:信息类别平均数众数中位数方

差甲939518.8乙909068.8(2)这两位同学的测试成绩各有什么特点(从不同的角度分别说出一条即可)?(3)为了使参赛选手取得好成绩,应该选谁参加比赛?为什么?答案1.A2.C.3.B4.D5.A6.A.7.A.8.D.9.

答案为:1.6.10.答案为:2.11.答案为:3.6.12.答案为:313.答案为:乙.14.答案为:2.15.解:(1)根据题意,甲第10次的射击成绩为:9×10﹣(8+10+9+10+7+9+10+8+1

0)=9;(2)甲这10次射击成绩的方差为:110×[4×(10﹣9)2+3×(9﹣9)2+2×(8﹣9)2+(7﹣9)2]=1;(3)∵平均成绩相等,而甲的方差小于乙的方差,∴乙的射击成绩更稳定.16.解:(1)甲的平均成绩是:(10+8+9+8+10+9)÷6=9,乙的平均成绩是:(10

+7+10+10+9+8)÷6=9;(2)甲的方差=16[(10﹣9)2+(8﹣9)2+(9﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]=23.乙的方差=16[(10﹣9)2+(7﹣9)2+(10﹣9)2+(10﹣9)2+(9﹣9)2+(8﹣9)2]=43.(3)推荐

甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.17.解:(1)如图所示;(2)[由题意,知15(10+9+9+a+b)=9,∴a+b=17.](3)在(2)的条件下,

a,b的值有四种可能:第①种和第②种方差相等:s2乙=15(1+0+0+4+1)=1.2>s2甲,∴甲比乙的成绩较稳定.第③种和第④种方差相等:s2乙=15(1+0+0+0+1)=0.4<s2甲,∴乙比甲的成绩稳定.因此,a=7,b=10或a=10,b=7时,甲比乙的

成绩较稳定.18.解:(1)乙队共10名队员,中位数落在第3组,为178,即a=178;甲队178出现的次数最多,故众数为178,即b=178;c=110×[(176﹣178)2×2+(177﹣178)2+(178﹣178)2×4+(179﹣178)2+(180﹣178)2×2]=1.8;

(2)选甲队好.∵甲队的方差为0.6,乙队的方差为1.8,∴甲队的方差小于乙队的方差,∴甲队的身高比乙队整齐,故选甲队比较好.19.解:(1)甲的中位数是94.5,乙的众数是99;(2)答案不惟一,如,甲的成绩比乙的成绩稳定等;(3)答

案不惟一,如,应该选乙.因为乙的众数比甲的众数大,乙取得高分的可能性比甲高.若选甲,则理由为平均数高于乙,方差小,比乙稳定

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 111
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?