【文档说明】2023年浙教版数学八年级上册《5.5 一次函数的简单应用》课时精品练习(含答案).doc,共(10)页,172.000 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-259347.html
以下为本文档部分文字说明:
2023年浙教版数学八年级上册《5.5一次函数的简单应用》课时精品练习一、选择题1.某油箱容量为60L的汽车,加满汽油后行驶了100km时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x
km,邮箱中剩油量为yL,则y与x之间的函数解析式和自变量取值范围分别是()A.y=0.12x,x>0B.y=60-0.12x,x>0C.y=0.12x,0≤x≤500D.y=60-0.12x,0≤x≤5002.有
甲、乙两个大小不同的水桶,容量分别为x、y公升,且已各装一些水.若将甲中的水全倒入乙后,乙只可再装20公升的水;若将乙中的水倒入甲,装满甲水桶后,乙还剩10公升的水,则x、y的关系式是()A.y=20-xB.y=x+10C.y=x+20D.y=x+303.如图,在物理课
上,老师将挂在弹簧测力计下端的铁块浸没在水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()4.某通讯公司
就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每
月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱5.小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家、下面哪一个图象能大致描述他回家过程中离学校的距离S(千
米)与所用时间t(分)之间的关系()A.B.C.D.6.甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图像如图所示,请你根据图像判断,下列说法正确的是(
).A.甲队率先到达终点B.甲队比乙队多走了200米路程C.乙队比甲队少用0.2分钟D.比赛中两队从出发到2.2秒时间段,乙队的速度比甲队的速度快7.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通
话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中正确结论的个数是()A.0B.1C.2D.38.
甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D
.仅有②③二、填空题9.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6km的公路,如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120范围内,且具有一次函数的关系,如下表所示.则y关于x的函数表达式为_____________(写出自变量x的取值范围).10
.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示.当0≤x≤1时,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为____________.11.为迎接省运会在我市召开,市里组织了一个梯形鲜花队参加开幕式,要求共站60排,第一
排40人,后面每一排都比前一排都多站一人,则每排人数y与该排排数x之间的函数关系式为(x为1≤x≤60的整数)12.如图,某航空公司托运行李的费用与托运行李的重量的关系为一次函数,由图可知行李的重量只要不超过________千克,就可以免费托运.13.设甲、乙两车在同一直线公路上匀速行驶,开始甲
车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,关于y与x的函数关系如图所示,则甲车的速度是米/秒.14.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自
行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是(填序号).三、解答题15.某工厂每天生产A、B两种款式的布制环保购物袋共450
0个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产
的购物袋全部售出后最多能获利多少元?16.我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民
5月份用水x吨,应交水费y元.(1)若0<x≤6,请写出y与x的函数关系式.(2)若x>6,请写出y与x的函数关系式.(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?17.某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(
180≤x≤300)满足一次函数关系,部分对应值如下表:x(元)180260280300y(间)100605040(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的
客房,宾馆每日需支出60元,当房价为多少元时,宾馆获得7200元的利润?(宾馆当利润=当日房费收入﹣当日支出)18.某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成
这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为件,图中d值为.(2)求出乙车间在引
入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?19.甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元
后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x(x>0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.参考答案1.D2.D3.D
4.D5.C6.C7.D8.A9.答案为:y=-0.2x+50(30≤x≤120)10.答案为:y=100x-40;11.答案为:y=39+x12.答案为:2013.答案为:20;14.答案为:①②③.15.解:(1)根据题意得:y=(2.3﹣2)x+(3.5﹣3)(4500﹣x)=﹣0.
2x+2250即y与x的函数表达式为:y=﹣0.2x+2550,(2)根据题意得:﹣x+13500≤10000,解得:x≥3500元,∵k=﹣0.2<0,∴y随x增大而减小,∴当x=3500时,y取得最大值,最大值y=﹣0.2×3500+2250=1550,答:该厂每天
最多获利1550元.16.解:(1)根据题意可知:当0<x≤6时,y=2x;(2)根据题意可知:当x>6时,y=2×6+3×(x﹣6)=3x﹣6;(3)∵当0<x≤6时,y=2x,y的最大值为2×6=12(元),12<27,∴该户当月用水超过6吨.令y=3x﹣
6中y=27,则27=3x﹣6,解得:x=11.答:这个月该户用了11吨水.17.解:,解得:k=﹣12,b=190.所以,y与x之间的函数表达式为y=﹣12x+190(180≤x≤300).(2)根据题意,得(x﹣100)(﹣12x+190)﹣
[100﹣(﹣12x+190)]×60=7200.整理,得x2﹣420x+41600=0.解得x1=260,x2=160(舍去).答:当房价为260元时,宾馆获得7200元的利润.18.解:(1)由图象甲车间每小时加工零件个
数为720÷9=80个,d=770,故答案为:80,770(2)b=80×2﹣40=120,a=(200﹣40)÷80+2=4,∴B(4,120),C(9,770)设yBC=kx+b,过B、C,∴,解得
,∴y=130x﹣400(4≤x≤9)(3)由题意得:80x+130x﹣400=1000,解得:x=203.答:甲车间加工203天时,两车间加工零件总数为1000件19.解;(1)甲商场写出y关于x的函数解析式y1=0.85x,乙商场写出y关于x的函数解析式
y2=200+(x﹣200)×0.75=0.75x+50(x>200),y2=x(0≤x≤200);(2)由y1>y2,得0.85x>0.75x+50,x>500,当x>500时,到乙商场购物会更省钱;由y1=y2得0.85x=0.75x+50,x=500时,到两家商场去
购物花费一样;由y1<y2,得0.85x<0.75x+500,x<500,当x<500时,到甲商场购物会更省钱;综上所述:x>500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x
<500时,到甲商场购物会更省钱.