【文档说明】2023年北师大版数学七年级下册《变量之间的关系》期末巩固练习(含答案).doc,共(11)页,176.553 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-258868.html
以下为本文档部分文字说明:
2023年北师大版数学七年级下册《变量之间的关系》期末巩固练习一、选择题1.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2.小军用50元钱买单价为8元的笔记本,
他剩余的钱数Q(元)与他买这种笔记本的本数x之间的关系式为Q=50-8x,则下列说法正确的是()A.Q和x是变量B.Q是自变量C.50和x是常量D.x是Q的函数3.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,
测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下表的关系:下列说法不正确的是()A.弹簧不挂重物时的长度为0cmB.x与y都是变量,且x是自变量,y是因变量C.随着所挂物体的重量增加,弹簧长度逐渐边长D.所挂物体的重量每增加1kg,弹簧长度增加0.5cm4.某科研小组在网上获
取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃-20-100102030声速/(m/s)31832433033634234下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为
20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s5.在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各表达式中的()m1234v0.012.98.0315.1A.v=2m-2B.v=m2-1C.v=3m-3D.v=m+16
.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这种关系的式子是()d5080100150b25405075A.b=d2B.b=2dC.b=12dD.b=d+257.李大爷想围成一个如图所示的长方形菜园,已知长方形菜园ABCD的
面积为24平方米,设BC边的长为x米,AB边的长为y米,则y与x之间的函数解析式为()A.y=24xB.y=-2x+24C.y=2x-24D.y=12x-128.汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,则汽
车距天津的路程s(千米)与行驶时间t(时)之间的函数关系式及自变量的取值范围是()A.s=120﹣30t(0≤t≤4)B.s=30t(0≤t≤4)C.s=120﹣30t(t>0)D.s=30t(t=4)9.如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(
﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大D.当x>1时,y随x的增大而减小10.如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没在水中,然后缓慢匀速
向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()11.某学校组织团员举行“伏羲文体旅游节”宣传活动,从学校骑自行车出发,先
上坡到达甲地后,宣传了8分钟,然后下坡到乙地又宣传了8分钟返回,行程情况如图所示.若返回时,上、下坡速度保持不变,在甲地仍要宣传8分钟,那么他们从乙地返回学校所用的时间是()A.33分钟B.46分钟C.48分钟D.45.2分钟1
2.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时
,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题13.小丽烧一壶水,发现在一定时间内温度随时间的变化而变化,即随时间的增加,温度逐渐增高,如果用t表示时间,T表示温度
,则_____是自变量,_____是因变量.14.已知3x﹣y=7中,变量是,常量是.把它写成用x的式子表示y的形式是.15.一辆汽车以45km/h的速度行驶,设行驶的路程为s(km),行驶的时间为t(h),则s与t的关系
式为,自变量是,因变量是.16.弹簧挂上物体后会伸长,测得﹣弹簧的长度y(cm)与所挂重物的质量x(㎏)有下面的关系:那么弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式为.17.有甲、乙两个长方体蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水高度y(米)与注
水时间x(小时)之间的函数图象如图,若要使甲、乙两个蓄水池蓄水深度相同,则注水时间应为小时.18.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间图象如图,则慢车比快车早出发小时,快车追上慢车行驶了千米,快车比慢车早小时到达B地.三、解答题19.已知高度每增加1000米
,气温下降6℃,如果某地面气温为22℃,(1)分别计算出该地1000米、2000米高空的气温.(2)若h米高空的气温为T,试写出T与h的关系,并指出关系式中的常量和变量.20.心理学家发现,学生对概念的接受能力
y与提出概念所用的时间x(单位:分)之间有如下关系(其中0≤x≤30).提出概念所用时间(x)257101213141720对概念的接受能力(y)47.853.556.35959.859.959.858.355(1)上表中反映了哪两个变
量之间的关系?那个是自变量?哪个是因变量?(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(3)从表格中可知,当提出概念所用时间x在什么范围内,学生的接受能力逐步增强?当提出概念
所用时间x在什么范围内,学生的接受能力逐步降低?(4)根据表格大致估计当提出概念所用时间为23分钟时,学生对概念的接受能力是多少.21.下列是三种化合物的结构式及分子式,⑴请按其规律,写出下一种化合物的分子式....⑵每一种化合物的分子式中H的个数m是否是分子式中C的个数n的函数?如果是,请你其写
出关系式.22.一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1L/km.(1)写出表示y与x的函数关系式.(2)指出自变量x的取值范围.(3)汽
车行驶200km时,油箱中还有多少汽油?23.甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图象如图.请你根据图象解决下列问题:⑴谁先出发?先出发多少时间?谁先到达终点?先到多少时间?⑵分别求出甲、乙两人的行驶速度;⑶在什么时间段内,两人均行驶在途中(不包括起
点和终点)?请你根据图中的情形,分别求出关于行驶时间x与行程y之间的函数关系式,根据图象回答:①两人相遇;②甲在乙的前面;③甲在乙后面.24.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车同时出发,设普通列
车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.根据图象进行以下探究:【信息读取】(1)甲、乙两地相距千米,两车出发后小时相遇;(2)普通列车到达终点共需小时,普通列车的速度是千米/小时.【解决问题】(3)求动
车的速度;(4)普通列车行驶t小时后,动车到达乙地,求此时普通列车还需行驶多少千米到达甲地?25.小刚周末骑单车从家出发去少年宫,当他骑了一段路时,想起要买一本书,于是原路返回到刚经过的深圳书城,买到书后继续前往少年宫,如图是他离家的
距离与时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小刚从家到深圳书城的路程是多少米?(2)小刚在书城停留了多少分钟?(3)买到书后,小刚从书城到少年宫的骑车速度是多少米/分?(4)小刚从家到少年宫的整个过程中,骑车一共行驶了多少米?答案1.C2.A3.A4.C5.B6
.C.7.A8.A.9.A10.D11.D12.D13.答案为:t是自变量,T是因变量.14.答案为:答案是:x和y;3和7;y=3x﹣7.15.答案为:s=45t;t;s.16.答案为:y=0.5x+12.17.答案为:35.18.答案为:2,276,4.19.解:∵离地面距离每升高1km
,气温下降6℃,∴该地空中气温T(℃)与高度h(km)之间的函数表达式为:T=22﹣6h;(1)把h=1km代入T=22﹣6h=16,把h=2km代入T=22﹣6h=22﹣12=10,答:该地1000米、2000米高空的气温分别为16℃、10℃;(2)T=22﹣6h,其中22,6是常量
,T,h是变量.20.解:(1)反映了提出概念所用的时间x和对概念接受能力y两个变量之间的关系;其中x是自变量,y是因变量.(2)提出概念所用的时间为13分钟时,学生的接受能力最强.(3)当x在2分钟至1
3分钟的范围内,学生的接受能力逐步增强.当x在13分钟至20分钟的范围内,学生的接受能力逐步降低.(4)估计当提出概念所用的时间为23分钟时,学生的接受能力为49.9.21.解:⑴C4H10;⑵m=2n+2.22.解:(1)根据题意,每行程x,耗油0.1x,即总油量减
少0.1x,则油箱中的油剩下50﹣0.1x,∴y与x的函数关系式为:y=50﹣0.1x;(2)因为x代表的实际意义为行驶里程,所以x不能为负数,即x≥0;又行驶中的耗油量为0.1x,不能超过油箱中现有汽油量的值5
0,即0.1x≤50,解得,x≤500.综上所述,自变量x的取值范围是0≤x≤500;(3)当x=200时,代入x,y的关系式:y=50﹣0.1×200=30.所以,汽车行驶200km时,油桶中还有30L汽油.23.解:⑴甲比乙早10
分钟出发,乙比甲早5分钟到达;⑵V甲=12km/tV乙=24km/t;⑶当10<t<25两人均在途中,y甲=12x,y乙=24x-4,①t=20两人相遇,②10<t<20甲在乙前面,③20<t<25,甲在乙后面.24.解:(1)由图象可得,甲、乙两地相距1400千米,两车出发后4小时相
遇,故答案为:1400,4;(2)由图象可知,普通列车到达终点共需14小时,普通列车的速度是:1400÷14=100千米/小时,故答案为:14,100;(3)动车的速度为:1400÷4﹣100=350﹣100=250千米/小时,即动车的速度为250千米/小时;(4)t=1400÷
250=5.6,动车到达乙地时,此时普通列车还需行驶:1400﹣100×5.6=840(千米),即此时普通列车还需行驶840千米到达甲地.25.解:(1)根据函数图象,可知小刚从家到深圳书城的路程是4000米;(2)30﹣20=10(分钟).所以小刚在书城停留了10分钟;(
3)小刚从书城到少年宫的路程为6250﹣4000=2250米,所用时间为35﹣30=5分钟,小刚从书城到少年宫的骑车速度是:2250÷5=450(米/分);(4)6000+(6000﹣4000)+(6250﹣4000)=6000+2000+2250
=10250(米).答:小刚从家到少年宫的整个过程中,骑车一共行驶了10250米.