【文档说明】人教版八年级数学下册《勾股定理的应用》期末专题复习(含答案).doc,共(12)页,178.893 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-258827.html
以下为本文档部分文字说明:
人教版八年级数学下册《勾股定理的应用》期末专题复习一、选择题1.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要()A.4米B.5米C.6米D.7米2.某工程的测量人员在规划一块如图所示的三角形土地时,在BC上有一处古建筑D,使得BC的长不能直接
测出,工作人员测得AB=130米,AD=120米,BD=50米,在测出AC=150米后,测量工具坏了,使得DC的长无法测出,请你想办法求出BC的长度为()A.90米B.120米C.140米D.150米3.《九章算术》第九章有如下题目,原文:今有垣高一
丈,倚木于垣,上与垣齐.引木却行一尺,其木至地.问木长几何?译文是:今有墙高1丈,倚木杆于墙.使木杆之上端与墙平齐.牵引木杆下端退行1尺,则木杆(从墙上)滑落至地上.间木杆长是多少?(1丈=10尺,1尺=10寸)()A.5尺5寸B.1丈1尺C.5丈5寸D.5丈5尺4.如图,长
方形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5B.22C.3D.55.如图,小明在广场上先向东走10米,又向南走40米,再向
西走20米,又向南走40米,再向东走70米.则小明到达的终止点与原出发点的距离是()A.90米B.100米C.120米D.150米6.如图,有一个由传感器控制的灯A装在门上方离地高4.5m的墙上,任何东西只要移至距该灯5m及5
m以内时,灯就会自动发光,请问一个身高1.5m的学生要走到离墙多远的地方灯刚好发光?()A.4mB.3mC.5mD.7m7.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺
,则水深是()尺A.3.5B.4C.4.5D.58.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)
()A.12mB.13mC.16mD.17m9.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.3B.5C.6D.710.如图,在Rt△ABC中,
∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.32B.43C.53D.8511.如图,已知线段BC,分别以B、C为圆心,大于12BC为半径作弧,两弧相交于E、F两点,连接CE
,过点E作射线BA,若∠CEA=60°,CE=4,则△BCE的面积为()A.4B.43C.8D.8312.如图,圆柱形纸杯高8cm,底面周长为12cm,在纸杯内壁离杯底2cm的点C处有一滴蜂蜜,一只蚂蚁正好在纸杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为()A.
23B.62C.10D.以上答案都不对二、填空题13.上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B处,从A、B望灯塔C,测得∠BAC=60°,点C在点B的正西方向,海岛B与灯塔C之间的距离是
海里.14.在平面直角坐标系中,点P(﹣5,2)到原点的距离是.15.如图,要做一个两条直角边的长分别是7cm和4cm的三角尺,斜边长应为cm.16.如图,A,B,C,D为四个养有珍稀动物的小岛,连线代表连接各个小岛的晃桥(
各岛之间也可以通过乘船到达),四边形ABCD为长方形,如果黄芳同学想从A岛到C岛,则至少要经过________米.17.某快递公司要在街道旁设立一个派送还点,向A、B两居民区投送快递,派送点应该设在什么地方,才能使它到A、B的距离之和最短?快递员根据实际情况,以街道为x轴,建立了如图所示
的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是.18.如图,在平面直角坐标系中,已知点P(2,1),点A是x轴上的一个动点,当△PAO是等腰三角形时,点A的坐标为.三、解答题19.如图所示,一棵36米高的树被风刮断了,树顶落在离树根24米处
,求折断处的高度AB.20.如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?21.如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了5003m到达B点,然后再沿北偏西30°方向
走了500m到达目的地C点.(1)求A、C两点之间的距离;(2)确定目的地C在营地A的什么方向?22.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速
滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?23.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=
6,BD=8,求ED的长.24.如图,在△ABC中,AD是BC边的中线,∠BAD=90°,AB=2,AC=11,求BC的长.25.如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以
内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?答案1.D2.C3.C4.D5.B.6.A.7
.C8.D.9.B.10.A11.B.12.C.13.答案为:303.14.答案为:3.15.答案为:65.16.答案为:370.17.答案为:(23,0).18.答案为:A(4,0),(5,0),(﹣5,0).19.解:设AB=x米,则AC=(36﹣x)米∵AB⊥BC,∴AB2+BC
2=AC2∴x2+242=(36﹣x)2.∴x=10,∴折断处的高度AB是10米.20.解:如图,在Rt△ABC中,根据勾股定理可知,BC=3000(米).3000÷20=150米/秒=540千米/小时.所以飞机
每小时飞行540千米.21.解:(1)过B点作BE∥AD,如图,∴∠DAB=∠ABE=60°.∵30°+∠CBA+∠ABE=180°,∴∠CBA=90°.即△ABC为直角三角形.由已知可得:BC=500m,AB=5003m,由勾股定理可得:AC2=BC2+AB2,所
以AC=1000(m);(2)在Rt△ABC中,∵BC=500m,AC=1000m,∴∠CAB=30°,∵∠DAB=60°,∴∠DAC=30°.即点C在点A的北偏东30°的方向.22.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,即BC=CA,设
AC为x,则OC=45﹣x,由勾股定理可知OB2+OC2=BC2,又∵OA=45,OB=15,把它代入关系式152+(45﹣x)2=x2,解方程得出x=25(cm).答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是25cm.23.(1)证明:
∵△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°,∴AC=BC,EC=DC,∠B=∠CAB=45°,∠ACE=∠BCD=90°﹣∠ACD,在△ACE和△BCD中∴△ACE≌△BCD(SAS);(2)解:∵△A
CE≌△BCD,∴∠CAE=∠B,AE=BD=8,∵∠CAB=∠B=45°,∴∠EAD=45°+45°=90°,在Rt△EAD中,由勾股定理得:ED=10.24.解:延长AD至点E,使AD=ED,连结CE.∵D
是BC的中点,∴BD=CD.在△ABD和△ECD中,∵AD=ED,∠ADB=∠EDC,BD=CD,∴△ABD≌△ECD(SAS),∴EC=AB=2,∴∠CED=∠BAD=90°.在Rt△AEC中,∵A
E2=AC2﹣EC2,∴AE=(11)2-(2)2=3,∴AD=12AE=32.在Rt△ABD中,∵BD2=AB2+AD2,∴BD=172,∴BC=2BD=17.25.解:作AB⊥MN,垂足为B在RtΔABP中,∵∠ABP=90°,∠APB=30°
,AP=160,∴AB=12AP=80∵点A到直线MN的距离小于100m,∴这所中学会受到噪声的影响.如图,假设拖拉机在公路MN上沿PN方向行驶到点C处学校开始受到影响,那么AC=100(m),由勾股定理得:BC2=1002
﹣802=3600,∴BC=60.同理,拖拉机行驶到点D处学校开始脱离影响,那么AD=100(m),BD=60(m),∴CD=120(m).拖拉机行驶的速度为:18km/h=5m/s,t=120m÷5m/s=24s.答:拖拉机
在公路MN上沿PN方向行驶时,学校会受到噪声影响,学校受影响的时间为24秒.