人教版数学九年级上册月考模拟试卷09(含答案)

DOC
  • 阅读 32 次
  • 下载 0 次
  • 页数 12 页
  • 大小 130.000 KB
  • 2022-11-19 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
人教版数学九年级上册月考模拟试卷09(含答案)
可在后台配置第一页与第二页中间广告代码
人教版数学九年级上册月考模拟试卷09(含答案)
可在后台配置第二页与第三页中间广告代码
人教版数学九年级上册月考模拟试卷09(含答案)
可在后台配置第三页与第四页中间广告代码
人教版数学九年级上册月考模拟试卷09(含答案)
人教版数学九年级上册月考模拟试卷09(含答案)
还剩5页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 12
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】人教版数学九年级上册月考模拟试卷09(含答案).doc,共(12)页,130.000 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-25162.html

以下为本文档部分文字说明:

人教版数学九年级上册月考模拟试卷一、选择题:1.一元二次方程x2+6x﹣6=0配方后化为()A.(x﹣3)2=3B.(x﹣3)2=15C.(x+3)2=15D.(x+3)2=3【解答】解:x2+6x=6,x2+6x+9=15,(x+3)2=15.故选:C.2.已知x1

、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0C.x1•x2>0D.x1<0,x2<0【解答】解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,结论A正确;B、∵x1、x2

是关于x的方程x2﹣ax﹣2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1•x2=﹣2,结论C错误;D、∵x1•x2=﹣2,∴x1、x2异号,结论D错误.故选:A.3.如果(m+3)x2﹣mx+1=

0是一元二次方程,则()A.m≠﹣3B.m≠3C.m≠0D.m≠﹣3且m≠0【解答】解:如果(m+3)x2﹣mx+1=0是一元二次方程,(m+3)≠0,即:m≠﹣3.故选:A.4.若关于x的一元二次方程(k﹣1)x2+6x+3=0有实数根,则实数k的取值范围为()

A.k≤4,且k≠1B.k<4,且k≠1C.k<4D.k≤4【解答】解:∵原方程为一元二次方程,且有实数根,∴k﹣1≠0,且△=62﹣4×(k﹣1)×3=48﹣12k≥0,解得k≤4,∴实数k的取值范围为k≤4,且k≠1.故选:

A.5.已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6B.5C.4D.3【解答】解:∵a=1,b=2,c=m﹣2,关于x的一元二次方程x2+2x+m﹣2=0有实数根∴△=b2﹣4ac=22﹣4(m﹣

2)=12﹣4m≥0,∴m≤3.∵m为正整数,且该方程的根都是整数,∴m=2或3.∴2+3=5.故选:B.6.下列一元二次方程中,有实数根的方程是()A.x2﹣x+1=0B.x2﹣2x+3=0C.x2+x﹣1=0D.x2+4=0【解答】解:A、△=(﹣1)2﹣4×1×1=﹣3<0,没有实数根;B、

△=(﹣2)2﹣4×1×3=﹣8<0,没有实数根;C、△=12﹣2×1×(﹣1)=3>0,有实数根;D、△=0﹣4×1×4=﹣16<0,没有实数根.故选:C.7.某市2004年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2006年底增加到363公顷.设绿化面积平均

每年的增长率为x,由题意,所列方程正确的是()A.300(1+x)=363B.300(1+x)2=363C.300(1+2x)=363D.363(1﹣x)2=300【解答】解:设绿化面积平均每年的增长率为x,300(1+x)2=363.故选:B.8.在一

次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人【解答】解:设参加酒会的人数为x人,根据题意得:x(x﹣1)=55,整理,得:x2﹣x﹣110=0,解得

:x1=11,x2=﹣10(不合题意,舍去).答:参加酒会的人数为11人.故选:C.9.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.

x(x+1)=1035B.x(x﹣1)=1035C.x(x+1)=1035D.x(x﹣1)=1035【解答】解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选:B.

10.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B.C.D.【解答】解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数开口向上,一次函数经过一、三象限,故C选项错

误;当a<0时,二次函数开口向下,一次函数经过二、四象限,故A选项错误;故选:D.11.用配方法解一元二次方程x2﹣4x+3=0时可配方得()A.(x﹣2)2=7B.(x﹣2)2=1C.(x+2)2=1D.(x+2)2=2【解答】解:∵x2﹣4x+3=0,∴x2﹣

4x=﹣3,∴x2﹣4x+4=﹣3+4,∴(x﹣2)2=1.故选B.12.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化

”旅游收入的年平均增长率约为()A.2%B.4.4%C.20%D.44%【解答】解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市2018年、2019年“竹文化”旅

游收入的年平均增长率约为20%.故选:C.二、填空题:13.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为2018.【解答】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1∴原式=3(2m2﹣3m)+2015=2018故答案为:2018

14.若二次函数y=2x2的图象向左平移2个单位长度后,得到函数y=2(x+h)2的图象,则h=2.【解答】解:二次函数y=2x2的图象向左平移2个单位长度得到y=2(x+2)2,即h=2,故答案为2.15.已知一个菱形的周长是

20,两条对角线的长的比是4:3,则这个菱形的面积是24.【解答】解:如图,菱形ABCD的周长是20,AC:BD=4:3,∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,AC⊥BD,AC=2OA,BD=2OD,∴OA:OD=4:3,设OA=4x,OD=3

x,在Rt△AOD中,AD==5x=5,∴x=1,∴OA=4,OD=3,∴AC=8,BD=6,[来源:学科网]∴∴S菱形ABCD=AC•BD=×8×6=24.故答案为:24.16.一元二次方程x2+6x﹣1=0

与x2﹣x+7=0的所有实数根的和等于﹣6.【解答】解:∵方程x2+6x﹣1=0的根的判别式△=62﹣4×1×(﹣1)=40>0,∴方程x2+6x﹣1=0有两个不相等的实数根;∵方程x2﹣x+7=0的根的判别式△=(﹣

1)2﹣4×1×7=﹣27<0,∴方程x2﹣x+7=0没有实数根.∴一元二次方程x2+6x﹣1=0与x2﹣x+7=0的所有实数根的和等于﹣6.故答案为:﹣6.17.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=2.【解答】解:∵关于x的一元二次方程mx2+

5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2.故答案是:2.18.若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则实数k的取值范围是k<1.【解答】解:∵方程x2+2x+k=0有

两个不相等的实数根,∴△=b2﹣4ac=22﹣4k=4﹣4k>0,解得:k<1.故答案为:k<1.19.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是12.【解答】解:x2﹣7x+10=0(x﹣2)(x﹣5)

=0,解得:x1=2(不合题意舍去),x2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.20.若关于x的一元二次方程x2+2x﹣k=0没有实数根,则k的取值范围是k<﹣1.【解答】解:∵关于x的一元二次方程x2+2x﹣k=0没有实数根,∴△=

b2﹣4ac<0,即22﹣4×1×(﹣k)<0,解这个不等式得:k<﹣1.故答案为:k<﹣1.21.如图所示的长方形中,甲、乙、丙、丁四块面积相等,甲的长是宽的2倍,设乙的长和宽分别是a和b,则a:b=9:2

.【解答】解:设甲的宽为x,长为2x.乙的面积为:ab=2x2(1)设丙的短直角边为c:ac=2x2(2)(1)和(2)联立可求出c=2b∵c+b=2x∴b=x(3)把(3)代入(1)式得a=3xa:b=9:2故答案为9:2.22.对于实

数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为1.【解答】解:由题意得,(x+1)2﹣(x+1)(x﹣2)=6,整理得,3x+3=6,解得,x=1,故答案为:1.三、解

答题:23.抛物线y=ax2与直线y=2x﹣3交于点A(1,b).(1)求a,b的值;(2)求抛物线y=ax2与直线y=﹣2的两个交点B,C的坐标(B点在C点右侧);(3)求△OBC的面积.【解答】解:(1)∵点A(1,b)在直线y=2x﹣

3上,∴b=﹣1,∴点A坐标(1,﹣1),把点A(1,﹣1)代入y=ax2得到a=﹣1,∴a=b=﹣1.(2)由解得或,∴点C坐标(﹣,﹣2),点B坐标(,﹣2).(3)S△BOC=•2•2=2.24.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克

,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千

克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴

y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天

销售这种水果获利150元,那么该天水果的售价为25元.25.如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米,求截去正方形的边

长.【解答】解:设截去正方形的边长为x厘米,由题意得,长方体底面的长和宽分别是:(60﹣2x)厘米和(40﹣2x)厘米,所以长方体的底面积为:(60﹣2x)(40﹣2x)=800,即:x2﹣50x+400=0,解得x1=10,x2=

40(不合题意舍去).答:截去正方形的边长为10厘米.26.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数

根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.【解答】解:(1)∵关于x的分式方程的根为非负数,

∴x≥0且x≠1,又∵x=≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;(2)∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,

且k=m+2,n=1时,∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,∴△≥0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,∴△=9m2﹣4m(m﹣1)=m(5m+4)≥0,则m>0或m≤﹣;∵x1、x2是整数,

k、m都是整数,∵x1+x2=3,x1•x2==1﹣,∴1﹣为整数,[来源:学|科|网Z|X|X|K]∴m=1或﹣1,由(1)知k≠1,则m+2≠1,m≠﹣1∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3;(3

)|m|≤2成立,理由是:由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,∴x1+x2=﹣==﹣m,x1x2==n,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2

﹣k),x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,[来源:学科网](x1+x2)2﹣3x1x2=k2,(﹣m

)2﹣3×n=(﹣1)2,m2﹣4n=1,n=①,△=(3m)2﹣4(2﹣k)(3﹣k)n=9m2﹣48n≥0②,把①代入②得:9m2﹣48×≥0,m2≤4,则|m|≤2,∴|m|≤2成立.27.在美丽乡村建设中,某县政府投入专项资金,用于乡村沼气池和垃圾集中处理点建设.该县政府计划:2018

年前5个月,新建沼气池和垃圾集中处理点共计50个,且沼气池的个数不低于垃圾集中处理点个数的4倍.(1)按计划,2018年前5个月至少要修建多少个沼气池?(2)到2018年5月底,该县按原计划刚好完成了任务,共花费资

金78万元,且修建的沼气池个数恰好是原计划的最小值.据核算,前5个月,修建每个沼气池与垃圾集中处理点的平均费用之比为1:2.为加大美丽乡村建设的力度,政府计划加大投入,今年后7个月,在前5个月花费资金的基础上增加投入10a%,

全部用于沼气池和垃圾集中处理点建设.经测算:从今年6月起,修建每个沼气池与垃圾集中处理点的平均费用在2018年前5个月的基础上分别增加a%,5a%,新建沼气池与垃圾集中处理点的个数将会在2018年前5个月的基础上分别增加5a%,

8a%,求a的值.【解答】解:(1)设2018年前5个月要修建x个沼气池,则2018年前5个月要修建(50﹣x)个垃圾集中处理点,根据题意得:x≥4(50﹣x),解得:x≥40.答:按计划,2018年前5个月至少要修建40个沼气池.(2)修建每个沼

气池的平均费用为78÷[40+(50﹣40)×2]=1.3(万元),修建每个垃圾处理点的平均费用为1.3×2=2.6(万元).根据题意得:1.3×(1+a%)×40×(1+5a%)+2.6×(1+5a%)×10×(1+8a%)=78×(1+10a%),设y=a%,整理得:50y

2﹣5y=0,解得:y1=0(不合题意,舍去),y2=0.1,∴a的值为10.

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 111
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?