人教版数学九年级上册期末模拟试卷08(含答案)

DOC
  • 阅读 26 次
  • 下载 0 次
  • 页数 14 页
  • 大小 375.000 KB
  • 2022-11-19 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
人教版数学九年级上册期末模拟试卷08(含答案)
可在后台配置第一页与第二页中间广告代码
人教版数学九年级上册期末模拟试卷08(含答案)
可在后台配置第二页与第三页中间广告代码
人教版数学九年级上册期末模拟试卷08(含答案)
可在后台配置第三页与第四页中间广告代码
人教版数学九年级上册期末模拟试卷08(含答案)
人教版数学九年级上册期末模拟试卷08(含答案)
还剩5页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 14
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】人教版数学九年级上册期末模拟试卷08(含答案).doc,共(14)页,375.000 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-25160.html

以下为本文档部分文字说明:

九年级数学试题第1页(共4页)人教版数学九年级上册期末模拟试卷一、选择题1.在平面直角坐标系中,点M(1,﹣2)与点N关于原点对称,则点N的坐标为A.(﹣2,1)B.(1,﹣2)C.(2,-1)D.(-1,2)2.用配方法解一元二次方程0122

xx,可将方程配方为A.212xB.012xC.212xD.012x3.下列事件中,属于随机事件的有①任意画一个三角形,其内角和为360°;②投一枚骰子得到的点数是奇数;③经过有交通信号灯的路口,遇到红灯;④从日历本上任选一天为星期天.A.

①②③B.②③④C.①③④D.①②④4.下列抛物线的顶点坐标为(4,-3)的是A.342xyB.342xyC.342xyD.342xy5.有n支球队参加篮球比赛,共比赛了15场,每两个

队之间只比赛一场,则下列方程中符合题意的是A.151nnB.151nnC.301nnD.301nn6.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的实验最有可能的是A.袋子中

有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球B.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6C.在“石头、剪刀、布”的游戏中,小宇随机出的是“剪刀”D.掷一枚质地均匀的硬币,落地时结果是“正面向上”7.如果一个正多边形的中心角为60°,那么这个正多边形的边数是

A.4B.5C.6D.78.已知点A(x1,y1),B(x2,y2)是反比例函数xy1的图象上的两点,若x1<0<x2,则下列结论正确的是A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<09.如图,AB为⊙O的直径,PD切⊙

O于点C,交AB的延长线于D,且CO=CD,则∠PCA=A.30°B.45°C.60°D.67.5°频率次数5000400030002000100000.250.200.150.100.05(第6题图)DCBOAP(

第9题图)九年级数学试题第2页(共4页)10.如图,在Rt△ABC和Rt△ABD中,∠ADB=∠ACB=90°,∠BAC=30°,AB=4,AD=22,连接DC,将Rt△ABC绕点B顺时针旋转一周,则线段DC长的取值范围是A.2≤DC≤4B.22≤DC≤4C.2

22≤DC≤22D.222≤DC≤222二、填空题11.如图,在平面直角坐标系xoy中,矩形OABC,OA=2,OC=1,写出一个函数0kxky,使它的图象与矩形OABC的边有两个公共点,这个函数的表达式可以为(答案不唯一).

12.已知关于x的方程032axx有一个根为﹣2,a=.13.圆锥的底面半径为7cm,母线长为14cm,则该圆锥的侧面展开图的圆心角为°.14.设O为△ABC的内心,若∠A=48°,则∠BOC=

°.15.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径为cm.16.抛物线cbxaxy2(a>0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,则a的取值范围是.三、解答题17.解方程(每小题4分,共8分)(1)02

2xx(2)01232xx18.(8分)已知关于x的方程)0(03)3(2kxkkx.(1)求证:方程一定有两个实数根;(2)若方程的两个实数根都是整数,求正整数k的值.CABOyx(第11题图)CDAB(第10题图)CBEFAD(第15题图)九

年级数学试题第3页(共4页)19.(8分)有甲、乙两个不透明的布袋,甲袋中有3个完全相同的小球,分别标有数字0,1和2;乙袋中有3个完全相同的小球,分别标有数字1,2和3,小明从甲袋中随机取出1个小球,记录标有

的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点M的坐标(x,y).(1)写出点M所有可能的坐标;(2)求点M在直线3xy上的概率.20.(8分)如图,直线y=x+2与y轴交于点A,与反比例函数0kxky的图象交于点C,过

点C作CB⊥x轴于点B,AO=2BO,求反比例函数的解析式.21.(8分)如图,12×12的正方形网格中的每个小正方形的边长都是1,正方形的顶点叫做格点.矩形ABCD的四个顶点A,B,C,D都在格点上,将△ADC绕点A顺时针

方向旋转得到△AD′C′,点C与点C′为对应点.(1)在正方形网格中确定D′的位置,并画出△AD′C′;(2)若边AB交边C′D′于点E,求AE的长.C'ABDC(第21题图)CAOByx(第20题图)九年级数学试题第4页(共

4页)22.(10分)在矩形ABCD中,AB=8,BC=6,将矩形按图示方式进行分割,其中正方形AEFG与正方形JKCI全等,矩形GHID与矩形EBKL全等.(1)当矩形LJHF的面积为43时,求AG的长;(

2)当AG为何值时,矩形LJHF的面积最大.23.(10分)如图,点A,C,D,B在以O点为圆心,OA长为半径的圆弧上,AC=CD=DB,AB交OC于点E.求证:AE=CD.LHIKJFEDBCAG(第22题图)1)OABCDE(

第23题图)九年级数学试题第5页(共4页)24.(12分)如图,在等边△BCD中,DF⊥BC于点F,点A为直线DF上一动点,以B为旋转中心,把BA顺时针方向旋转60°至BE,连接EC.(1)当点A在线段DF的延长线上时,①

求证:DA=CE;②判断∠DEC和∠EDC的数量关系,并说明理由;(2)当∠DEC=45°时,连接AC,求∠BAC的度数.25.(14分)如图,在平面直角坐标系xoy中,二次函数cbxaxy2(0a)的图象经过A(0,4),B(2,0),C(-2,0)三点.

(1)求二次函数的解析式;(2)在x轴上有一点D(-4,0),将二次函数图象沿DA方向平移,使图象再次经过点B.①求平移后图象顶点E的坐标;②求图象A,B两点间的部分扫过的面积.FDBCAOExy(第25题图)EDFBCA(第24题图)九年级数学试题第6页(共4页)参

考答案一、选择题(本大题共10小题,每小题4分,共40分)1.D;2.A;3.B;4.C;5.C;6.B;7.C;8.B;9.D;10.D.二、填空题(本大题共6小题,每小题4分,共24分)11.如:xy1(答案不唯一,0<k<2的

任何一个数);12.2;13.180;14.114;15.2.5;16.0<a<3.三、解答题(本大题共9小题,共86分)17.(每小题4分,共8分)(1)解:0)2(xx„„„„„„„„„„„„„„„„„„„„„„„2分∴2,021xx.„

„„„„„„„„„„„„„„„„„„„4分(2)解:1,2,3cba∴161-34-22)(∴64232162x„„„„„„„„„„„„„„„„2分∴1,3121xx.„„„„„„„„„„„„„„„„„„„4分18.(8分)(1)证明:

9634)3(22kkkk0)32k(,„„„„„„„„„„„„„„„„„„„„2分∴方程一定有两个实数根.„„„„„„„„„„„„„„„„3分(2)解:3,3,ckbka,22)3(34)3kk

k(,kkkkkkx2)3(32)3()3(2,kxx3,121,„„„„„„„„„„„„„„„„„„6分∵方程的两个实数根都是整数,∴正整数31或k.„„„„„„„„„„„„„„„„„„„8分19.(8分)解:(

1)九年级数学试题第7页(共4页)方法一:列表:yx1230(0,1)(0,2)(0,3)1(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)从表格中可知,点M坐标总共有九种可能情况:(0,1),(0,2),(0,3),(1,1),(1,2),(

1,3),(2,1),(2,2),(2,3).„„„„„„„„„„„„„„„„„„„„„„„3分方法二:从树形图中可知,点M坐标总共有九种可能情况:(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),

(2,1),(2,2),(2,3).„„„„„„„„„„„„„„„„„„„„„„„3分(2)当x=0时,y=-0+3=3,当x=1时,y=-1+3=2,当x=2时,y=-2+3=1,„„„„„„„„„„„„„„„„„„„„6分由(1)可得点M坐标总

共有九种可能情况,点M落在直线y=-x+3上(记为事件A)有3种情况.∴P(A)3193.„„„„„„„„„„„„„„„„8分20.(8分)解:当x=0时,y=2,∴A(0,2),„„„„„„„„„„„„„2分∴AO=2,∵AO=2BO,∴BO=1,„„„„„„„„„„„

„„„„„„„4分当x=1时,y=1+2=3,∴C(1,3),„„„„„„„„„„„„„„„„„6分把C(1,3)代入xky,解得:3kxy3:反比例函数的解析式为„„„„„„„„„„„„„„„„„„„8分21.(8分)解:(1)准确画出图形;„„„„„„„„„„„„„„„„

„„„3分102321321321甲袋:乙袋:ED'C'ABDC(第21题答题图)九年级数学试题第8页(共4页)(2)∵将△ADC绕点A顺时针方向旋转得到△AD′C′,点C与点C′为对应点,∴△ADC≌△AD′C′,∴AC

=AC′,AD′=AD=5,CD′=CD=10,∠AD′C′=∠ADC=90°,∠AC′D′=∠ACD,∵AB∥CD,∴∠BAC=∠ACD,∵AB⊥CC′,AC=AC′,∴∠BAC=∠C′AB,∴∠AC′D′=∠C′AB,∴C′

E=AE.„„„„„„„„„„„„„„„„„„„5分222RECBEBCBECt中,在,xAEABBExAE-10-,则设,222)-105xx(,„„„„„„„„„„„„„„„„„„„„„„„„„„7分425:x解得.425的长为答:AE

„„„„„„„„„„„„„„„„„„„„„„„„„„8分22.(10分)解:(1)正方形AEFG和正方形JKCI全等,矩形GHID和矩形EBKL全等,设AG=x,DG=6-x,BE=8-x,FL=x-(6-x)=2x-6,LJ=8-2x,方法1:LJFL

SLIHF矩形,∴43)28)(62(xx„„„„„„„„„„„„„„„„„„„„„„„„2分∴415,41321xx,AG=413或AG=415.„„„„„„„„„„„„„„„4分方法2:AEFGDGH

IABCDLIHFSSSS正方形矩形矩形矩形22)6)(8(2248432xxx,„„„„„„„„„„„„„„„„„„„2分∴415,41321xx,AG=413或AG=415.„„„„„„„„„„„„„„„4分(2)设矩形LJH

F的面积为S,)28)(62(xxS„„„„„„„„„„„„„„„„„„„„„„„„„6分九年级数学试题第9页(共4页)482842xx1)27(42x„„„„„„„„„„„„„„„„„„„„„„„„„8分04a,S有最大值,当AG=27时

,矩形LJHF的面积最大.„„„„„„„„„„„„„„„10分23.(10分)证明:方法一:连接OC,OD,∵AC=CD=DB,∴DBCDAC弧弧弧,∴BODCODAOC,„„„„„„„„„„„„„„„„„„„„2分∴AOCCODDOBCODCOB22,∵

CAECOB2,∴CAEAOC,„„„„„„„„„„„„„„„4分OCOAAOC中,在,2-902180AOCAOC-ACO,„„„„5分ACECAEAECACE--18

0中,在)290(180AOCAOC2-90AOC,„„„„„„„„„„„„„„„„„„„„„„„„„„6分AECACE,„„„„„„„„„„„„„„„„„„„„„„„„7分AEAC,„„„„„„„„„„„„„„„

„„„„„„„„„„„8分CDAC,CDAE.„„„„„„„„„„„„„„„„„„„„„10分方法二:连接OC,OD,∵AC=CD=DB,∴DBCDAC弧弧弧,∴BODCODAOC,„„„„„„„„„„„„„

„„„„„„„2分∴AOCCODDOBCODCOB22,∵CAECOB2,∴CAEAOC,„„„„„„„„„„„„„„„4分∵∠CAO=∠CAE+∠EAO,∠AEC=∠AOC

+∠EAO,∴∠CAO=∠AEC,„„„„„„„„„„„„„„„„„„„„„„„„„6分OCOAAOC中,在,∴∠ACO=∠CAO,∴∠ACO=∠AEC,AEAC,„„„„„„„„„„„„„„„„„„8分OABCDE(第23题答题图

)九年级数学试题第10页(共4页)CDAC,CDAE„„„„„„„„„„„„„„„„„„„„„„10分方法三:连接AD,OC,OD,∵AC=DB,∴弧AC=弧BD,∴∠ADC=∠DAB,„„„„„„„„„„„„„„„„„„„„„„„„„2分∴CD∥AB

,∴∠AEC=∠DCO,„„„„„„„„„„„„„„„„„„„„„„„„„4分∵AC=CD,AO=DO,∴CO⊥AD,∴∠ACO=∠DCO,„„„„„„„„„„„„„„„„„„„„„„„„„6分∴∠ACO=∠AEC,∴AC=AE,

„„„„„„„„„„„„„„„„„„„„8分∵AC=CD,∴AE=CD.„„„„„„„„„„„„„„„„„„„„„„„10分24.(12分)(1)①证明:∵把BA顺时针方向旋转60°至BE,∴AB

EBEBA,60°,„„„„„„„„„„„„1分在等边△BCD中,BCDB,60DBCFBAFBADBCDBA60,FBACBE60,CBEDBA,„„„„„„„„„„„„„„„„2分∴△BAD≌△BEC,∴DA=CE;„„„„„„„„„„„„

„„„„„„„3分②判断:∠DEC+∠EDC=90°.„„„„„„„„„„4分DCDB,BCDA,3021BDCBDA,∵△BAD≌△BEC,∴∠BCE=∠BDA=30°,„„„„„„„„„„„„„„„„„„„„„„„5分在等边△BCD中,∠BCD=

60°,∴∠ACE=∠BCE+∠BCD=90°,∴∠DEC+∠EDC=90°.„„„„„„„„6分(2)分三种情况考虑:①当点A在线段DF的延长线上时(如图1),由(1)可得,为直角三角形DCE,90DCE,EDFB

CA(第24题答题图1)九年级数学试题第11页(共4页)459045DECEDCDEC时,当,DECEDC,CECD,由(1)得DA=CE,∴CD=DA,CDBDDBC中,在等边,CDDABD60BDC,

BCDA,3021BDCCDABDA,„„„„„„„„„„„„„„„„„7分DADBBDA中,在,752-180BDABAD,DCDADAC中,在,752-180ADCDAC,1507

575DACBADBAC.„„„„„„„„„„„„„8分②当点A在线段DF上时(如图2),BEBAB至顺时针方向旋转为旋转中心,把以60,60ABEBEBA,,60DBCBCBDBDC,中,在等边,ABEDBC,ABC

ABEABCDBC--,EBCDBA即,DBA≌CBE,CEDA,„„„„„„„„„„9分90RDFCDFCt中,在,DF<DC,∵DA<DF,DA=CE,∴CE<DC,由②可知为直角三角形DCE,∴∠DEC≠45°.„„„„„„„„„„„10分③当点A

在线段FD的延长线上时(如图3),同第②种情况可得DBA≌CBE,ECBADBCEDA,,60BCDBDCBDC中,在等边,BCDA,EDFBCA(第24题答题图3)EDFBCA(第24题答题图2)九年级数学试

题第12页(共4页)3021BDCCDFBDF,150180BDFADB,150ADBECB,90BCDECBDCE,45904

5DECEDCDEC时,当,DECEDC,CECD,∴AD=CD=BD,„„„„„„„„„„„„„„„„„11分∵150ADCADB,152-180ADBBAD,152-180

CDACAD,30CADBADBAC,.30150或的度数为综上所述,BAC„„„„„„„12分25.(14分)(1)得)代入()()(把cbxaxyCBA20,2-,0,2,4,0,

0240244cbacbac,„„„„„„„„„„2分401:cba解得,42xy.„„„„„„„„„„„„4分(2)设直线DA得解析式为y=kx+d(k≠0),把A(0,4)

,D(-4,0)代入得,044dkd,41:dk解得,∴y=x+4,„„„„„„„„„„„„„„„„„„„„„„„„„„„„6分FDBCAOExy(第25题答题图)GIKHL九年级数学试题第13页(共4页

)设E(m,m+4),平移后的抛物线的解析式为:4)(2mmxy.把B(2,0)代入得:04)-2-2mm(不符合题意,舍去),解得(0521mm,∴E(5,9).„„„„„„„„„„„„„„„„„„„„„„„„„„8分(3)如图,连接AB,过点B作BL∥AD交平移后的抛

物线于点G,连结EG,∴四边形ABGE的面积就是图象A,B两点间的部分扫过的面积.„„„„10分过点G作GK⊥x轴于点K,过点E作EI⊥y轴于点I,直线EI,GK交于点H.方法一:由点A(0,4)平移至点E(5,9),可知点B先向右平移5个单位,再向上平移5个单位至点G.∵B(2,0),∴点G(7

,5),„„„„„„„„„„„„„„„„„„„12分∴GK=5,OB=2,OK=7,∴BK=OK-OB=7-2=5,∵A(0,4),E(5,9),∴AI=9-4=5,EI=5,∴EH=7-5=2,HG=9-5=4,∴GBKEHGAEIAOBIOKHABGHS-

S-S-S-SS矩形四边形3025-8-635521-4221-5521-4221-97答:图象A,B两点间的部分扫过的面积为30.„„„„„„„„„„„14分方法二:bxyBL的解析式为设直线,02:0,2bB)代入得

(把点,2b,2xy,9)5(22xyxy联立,02:11yx解得,5722yx,∴点G(7,5),„„„„„„„„„„„„„„„„„„„„„„„„„12分∴

GK=5,OB=2,OK=7,∴BK=OK-OB=7-2=5,∵A(0,4),E(5,9),∴AI=9-4=5,EI=5,∴EH=7-5=2,HG=9-5=4,∴GBKEHGAEIAOBIOKHABGH

S-S-S-S-SS矩形四边形九年级数学试题第14页(共4页)3025-8-635521-4221-5521-4221-97答:图象A,B两点间的部分扫过的面积为30.„„„„„„„„„„„14分

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 111
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?