中考数学一轮总复习02《整式与因式分解》知识讲解+巩固练习(基础版)(含答案)

DOC
  • 阅读 33 次
  • 下载 0 次
  • 页数 11 页
  • 大小 491.500 KB
  • 2022-11-19 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
中考数学一轮总复习02《整式与因式分解》知识讲解+巩固练习(基础版)(含答案)
可在后台配置第一页与第二页中间广告代码
中考数学一轮总复习02《整式与因式分解》知识讲解+巩固练习(基础版)(含答案)
可在后台配置第二页与第三页中间广告代码
中考数学一轮总复习02《整式与因式分解》知识讲解+巩固练习(基础版)(含答案)
可在后台配置第三页与第四页中间广告代码
中考数学一轮总复习02《整式与因式分解》知识讲解+巩固练习(基础版)(含答案)
中考数学一轮总复习02《整式与因式分解》知识讲解+巩固练习(基础版)(含答案)
还剩5页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 11
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】中考数学一轮总复习02《整式与因式分解》知识讲解+巩固练习(基础版)(含答案).doc,共(11)页,491.500 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-24888.html

以下为本文档部分文字说明:

中考总复习:整式与因式分解—知识讲解(基础)【考纲要求】1.整式部分主要考查幂的性质、整式的有关计算、乘法公式的运用,多以选择题、填空题的形式出现;2.因式分解是中考必考内容,题型多以选择题和填空题为主,也常常

渗透在一元二次方程和分式的化简中进行考查.【知识网络】【考点梳理】考点一、整式1.单项式数与字母的积的形式的代数式叫做单项式.单项式是代数式的一种特殊形式,它的特点是对字母来说只含有乘法的运算,不含有加减运算.在含有除法运算时

,除数(分母)只能是一个具体的数,可以看成分数因数.单独一个数或一个字母也是单项式.要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式几个单项式的代数和

叫做多项式.也就是说,多项式是由单项式相加或相减组成的.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.(4)把一个多项式按某一个字母的指数从大到

小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.3.整式单项式和多项式统称整式.4.同类项所含字母

相同,并且相同字母的指数也分别相同的项,叫做同类项.5.整式的加减整式的加减其实是去括号法则与合并同类项法则的综合运用.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.如

果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.整式加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并

同类项.6.整式的乘除①幂的运算性质:②单项式相乘:两个单项式相乘,把系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.③单项式与多项式相乘:单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加.用式子表达:④多项

式与多项式相乘:一般地,多项式乘以多项式,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.用式子表达:平方差公式:完全平方公式:在运用乘法公式计算时,有时要在式子中添括号,添括号时,如果括号前面是正号,括到括号里的各项

都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.⑤单项式相除:两个单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.⑥多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所

得的商相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的有理数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即mnpmnpaaaa(,,mnp都是正整数).(3)

公式()mnmnaa的推广:(())mnpmnpaa(0a,,,mnp均为正整数)(4)公式()nnnabab的推广:()nnnnabcabc(n为正整数).考点二、因式分解1.因式分解把一个多

项式化成几个整式的积的形式,这样的式子变形叫做把这个多项式因式分解.2.因式分解常用的方法(1)提取公因式法:)(cbammcmbma(2)运用公式法:平方差公式:))((22bababa;完全平方公式:222)(2bababa(3)十字相乘

法:))(()(2bxaxabxbax3.因式分解的一般步骤(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,

不行的再用求根公式法;(4)最后考虑用分组分解法及添、拆项法.要点诠释:(1)因式分解的对象是多项式;(2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到每个因式都不能再分解为止.(4)十字相乘法分解思路

为“看两端,凑中间”,二次项系数a一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.【典型例题】类型一、整式的有关概念及运算1.若3xm+5y2与x3yn的和是单项式,则nm.【答案】14【解析】由3xm+5y2与x3y

n的和是单项式得3xm+5y2与x3yn是同类项,∴532mn解得22mn,nm=2-2=14【点评】本题考查同类项定义结合求解二元一次方程组,负整数指数幂的计算.同类项的概念为:所含字母相同,并且相同字母的指数也相同的单项式.举一反三:【变式】若单项式是同类项,则的值

是()A、-3B、-1C、D、3【答案】由题意单项式是同类项,所以,解得,,应选C.2.下列各式中正确的是()A.B.a2·a3=a6C.(-3a2)3=-9a6D.a5+a3=a8【答案】A;【解析】选项B为同

底数幂乘法,底数不变,指数相加,a2·a3=a5,所以B错;选项C为积的乘方,应把每个因式分别乘方,再把所得的幂相乘,(-3a2)3=-27a6,所以C错;选项D为两个单项式的和,此两项不是同类项,不能合并,所以D错;选项A为负指数幂运算,一个数的负指数

幂等于它的正指数幂的倒数,A正确.答案选A.【点评】考查整数指数幂运算.举一反三:【变式1】下列运算正确的是()A.B.C.D.【答案】A.2-3=18;B.42;C.235aaa正确;D.325aaa.故选C.【高清课程名称:整式与因式分解高清ID号:

399488关联的位置名称(播放点名称):例1-例2】【变式2】下列运算中,计算结果正确的个数是().(1)a4·a3=a12;(2)a6÷a3=a2;(3)a5+a5=a10;(4)(a3)2=a9;(5)(-ab2)2=ab4;(6)22212xxA.无B.1个C.

2个D.3个【答案】A.3.利用乘法公式计算:(1)(a+b+c)2(2)(2a2-3b2+2)(2-2a2+3b2)【答案与解析】(1)(a+b+c)2可以利用完全平方公式,将a+b看成一项,则(a+b+c)2=[(a+b)2+2(a+b)c+c2]=a2+

2ab+b2+2ac+2bc+c2=a2+b2+c2+2ab+2ac+2bc.(2)(2a2-3b2+2)(2-2a2+3b2)两个多项式中,每一项都只有符号的区别,所以,我们考虑用平方差公式,将符号相

同的看作公式中的a,将符号相反的项,看成公式中的b,原式=[2+(2a2-3b2)][2-(2a2-3b2)]=4-(2a2-3b2)2=4-4a4+12a2b2-9b4.【点评】利用乘法公式去计算时,要特别注意公式的形式及符号特点,灵活地进行各种变形.举一反三:【

变式】如果a2+ma+9是一个完全平方式,那么m=______.【答案】利用完全平方公式:(a±3)2=a2±6a+9.m=±6.类型二、因式分解4.(2015春•兴化市校级期末)因式分解(1)9x2﹣81(2)(x2+y2)2﹣4x2y2(3)3x(a﹣b)﹣6y(b﹣a

)(4)6mn2﹣9m2n﹣n3.【思路点拨】(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法;(4)最后考虑用分组分解法及添、拆项法.【答

案与解析】解:(1)原式=9(x2﹣9)=9(x+3)(x﹣3);(2)原式=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2;(3)原式=3(a﹣b)(x+2y);(4)原式=﹣n(9m2+n2﹣6mn)=﹣n(3m﹣n)2.【点评】把一个多项式进行因式分解,

首先要看多项式是否有公因式,有公因式就要先提取公因式,再看是否还可以继续进行分解,是否可以利用公式法进行分解,直到不能进行分解为止.举一反三:【高清课程名称:整式与因式分解高清ID号:399488关联的位置名称(播放点名称

):例3(1)-(2)】【变式】(2015春•陕西校级期末)分解因式:(1)(2x+y)2﹣(x+2y)2(2)﹣8a2b+2a3+8ab2.【答案】解:(1)原式=[(2x+y)+(x+2y)][(2x+y)﹣(x+2y)]=3

(x+y)(x﹣y);(2)原式=2a(a2﹣4ab+4b2)=2a(a﹣2b)2.5.若xymxy2256能分解为两个一次因式的积,则m的值为()A.1B.-1C.1D.2【思路点拨】对二元二次多项式分解因式时,要先观察其二次项能否分解成两个一次

式乘积,再通过待定系数法确定其系数,这是一种常用的方法.【答案】C.【解析】解:xymxyxyxymxy225656-6可分解成23或32,因此,存在两种情况:(1

)x+y-2(2)x+y-3x-y3x-y2由(1)可得:m1,由(2)可得:m1.故选择C.【总结升华】十字相乘法分解思路为“看两端,凑中间”,二次项系数a一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记

把提出的负号添上.举一反三:【变式】因式分解:6752xx_______________.【答案】67521352xxxx类型三、因式分解与其他知识的综合运用6.已知a、b、c是△AB

C的三边的长,且满足:a2+2b2+c2-2b(a+c)=0,试判断此三角形的形状.【思路点拨】式子a2+2b2+c2-2b(a+c)=0体现了三角形三边长关系,从形式上看与完全平方式相仿,把2b2写成b2+b2,故等式可变成2个完全平方式,从而得到结论.【答案与解析】解:a2+2b2+c

2-2b(a+c)=0a2+b2+b2+c2-2ba-2bc=0(a-b)2+(b-c)2=0即:a-b=0,b-c=0,所以a=b=c.所以△ABC是等边三角形.【总结升华】通过对式子变化,化为平方和等于零

的形式,从而求出三边长的关系.中考总复习:整式与因式分解—巩固练习(基础)【巩固练习】一、选择题1.下列计算中错误的是()A.2532242abcabcabB.2322243216ababaabC.214)21(4222yxyyxD.3658410221

)()(aaaaaa2.已知537xy与一个多项式之积是736555289821xyxyxy,则这个多项式是()A.2243xyB.2243xyxyC.2224314xyxyD.223437xyxy3.把代数式分解因式,下列

结果中正确的是()A.B.C.D.4.(2015•佛山)若(x+2)(x﹣1)=x2+mx+n,则m+n=()A.1B.﹣2C.﹣1D.25.如果,则b为()A.5B.-6C.-5D.66.把2222abcbc进行分组,其

结果正确的是()A.222()(2)acbbcB.222()2abcbcC.222()(2)abcbcD.222(2)abbcc二、填空题7.已知2220x,则2x的值为.8.(1)已知10m=3,10n=2,210mn__

________.(2)已知23m=6,9n=8,643mn___________.9.分解因式:26121311xxxxx_________________.10.(2015秋•乌海

校级期中)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证(填写序号).①(a+b)2=a2+2ab+b2②(a﹣b)2=a2﹣2ab

+b2③a2﹣b2=(a+b)(a﹣b)④(a+2b)(a﹣b)=a2+ab﹣2b2.11.多项式可分解为5xxb,则a,b的值分别为_________.12.分解因式:321aaa=________.三、解答题13.将下列各式分解因式

:(1)22355xx;(2)25166xx;(3)22616xxyy;(4).14.(2015春•故城县期末)(1)实验与观察:(用“>”、“=”或“<”填空)当x=﹣5时,代数式x2﹣2x+21;当x=1时,代数式x2﹣2x+21;„(2)归纳与证明:换几个数再试试,你

发现了什么?请写出来并证明它是正确的;(3)拓展与应用:求代数式a2+b2﹣6a﹣8b+30的最小值.15.已知21xx,求下列代数式的值:(1)553xx;(2)221xx.16.若三角形的三边长是abc、、,且满足2222220abcabbc,试判断三角形的形状.小明是这样

做的:解:∵2222220abcabbc,∴2222(2)(2)0aabbcbcb.即220abbc∵220,0abbc,∴,abbcabc即.∴该三角形是等边三角形.仿照小明的解法解答问题:已知:

abc、、为三角形的三条边,且2220abcabbcac,试判断三角形的形状.【答案与解析】一、选择题1.【答案】D;【解析】10485631()()22aaaaaa.2.【答案】C;【解析】这个多项式为73655553222

28982174314xyxyxyxyxyxy.3.【答案】D;【解析】运用提取公因式法和公式法因式分解.4.【答案】C;【解析】∵原式=x2+x﹣2=x2+mx+n,∴m=1,n=﹣2.∴m+n=1﹣2=﹣1.故选:C.5.【答案】B;【解析】由题意5306bb,.6.【答案

】D;【解析】原式=222(2)abbccabcabc.二、填空题7.【答案】5;【解析】由2220x得22220x.∴25x.8.【答案】(1)29;(2)827;【解析】(1)2291010102

mnmn;(2)332642262733988mnmn.9.【答案】22661xx;【解析】原式26112131xxxxx222671651xxxxx令

2671xxu,22222uuxxuuxx222661uxxx.10.【答案】③;【解析】∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图

形中阴影部分的面积相等,∴a2﹣b2=(a+b)(a﹣b).故可以验证③.故答案为:③.11.【答案】10,2ab;【解析】2555xxbxbxb,所以53,2bb,5,10aba.12.【答案】211a

a;【解析】321aaa221111aaaaa.三、解答题13.【答案与解析】(1)22355xx315xx;(2)251116623x

xxx.(3)2261682xxyyxyxy;(4)因为25242292xxx所以:原式225522xx

2158xx14.【答案与解析】解:(1)把x=﹣5代入x2﹣2x+2中得:25+10﹣2=33>1;把x=1代入x2﹣2x+2中得:1﹣2+1=1,故答案为:>,=;(2)∵x2﹣2x+2=x2﹣2x+1+1=(x﹣1)2+1,X为任何实数

时,(x﹣1)2≥0,∴(x﹣1)2+1≥1;(3)a2+b2﹣6a﹣8b+30=(a﹣3)2+(b﹣4)2+5.∵(a﹣3)2≥0,(b﹣4)2≥0,∴(a﹣3)2+(b﹣4)2+5≥5,∴代数式a2+b2﹣

6a﹣8b+30的最小值是5.15.【答案与解析】(1)2523343111xxxxxxxxxx2231213153xxxxx∴55353536xxxx.(2)已知两边同除以x,得111,1xxxx

即∴22211()21xxxx∴2213xx.16.【答案与解析】∵2222222220abcabbcac∴2222222220aabbbbccaacc2220abbcac∴000abbcac

∴abc,该三角形是等边三角形.

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 112
  • 被收藏 0
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?