【文档说明】(通用版)高考数学(文数)一轮复习考点梳理与过关练习07《指数与指数函数》(含详解).doc,共(31)页,1.354 MB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-24429.html
以下为本文档部分文字说明:
考点07指数与指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点.(4)知道指数函数是一类重要的函数模型.一、
指数与指数幂的运算1.根式(1)n次方根的概念与性质n次方根概念一般地,如果nxa,那么x叫做a的n次方根,其中1n,nΝ.性质①当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.这时,a的n次方根用符号na表示.②当n是偶数时,正数a的n次方根有两个,这
两个数互为相反数.这时,正数a的正的n次方根用符号na表示,负的n次方根用符号na表示.正的n次方根与负的n次方根可以合并写成(0)naa.负数没有偶次方根.③0的任何次方根都为0,记作00n.(2)根式的概念与性质根概念式子na叫做根式,这里n叫做根
指数,a叫做被开方数.式性质①()(1,)nnaannN且.②当n为奇数时,nnaa.③当n为偶数时,,0,0nnaaaaaa.【注】速记口诀:正数开方要分清,根指奇偶大不同,根指为奇根一个,根指为偶双胞生.负数只有奇
次根,算术方根零或正,正数若求偶次根,符号相反值相同.负数开方要慎重,根指为奇才可行,根指为偶无意义,零取方根仍为零.2.实数指数幂(1)分数指数幂①我们规定正数的正分数指数幂的意义是*(0,,,1)mnmnaaamnnN且.于是,在条
件*0,,,1amnnN且下,根式都可以写成分数指数幂的形式.②正数的负分数指数幂的意义与负整数指数幂的意义相仿,我们规定*1(0,,,mnmnaamnaN且1)n.③0的正分数指数幂等于0,0的负分数指数幂没有意义.(2)有理数指数幂规定
了分数指数幂的意义之后,指数的概念就从整数指数幂推广到了有理数指数.整数指数幂的运算性质对于有理数指数幂也同样适用,即对于任意有理数,rs,均有下面的运算性质:①(0,,)rsrsaaaarsQ;②()(0,,)rsr
saaarsQ;③()(0,0,)rrrabababrQ.(3)无理数指数幂对于无理数指数幂,我们可以从有理数指数幂来理解,由于无理数是无限不循环小数,因此可以取无理数的不足近似值和过剩近似值来无限逼近它,最后我们也可得出无理数指数幂是一个确定的实
数.一般地,无理数指数幂(0,)aa是无理数是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.二、指数函数的图象与性质1.指数函数的概念一般地,函数(0,1)xyaaa且叫做指数函数,其中x是自变量,函数的定义域是R.【注】指数函数(0,1)xy
aaa且的结构特征:(1)底数:大于零且不等于1的常数;(2)指数:仅有自变量x;(3)系数:ax的系数是1.2.指数函数(0,1)xyaaa且的图象与性质01a1a图象定义域R值域(0,)奇偶性非奇非偶函数对称性函数y=a−x与y=ax的图象关于y轴对称过定点
过定点(0,1),即0x时,1y单调性在R上是减函数在R上是增函数函数值的变化情况当0x时,1y;当0x时,01y当0x时,1y;当0x时,01y底数对图象的影响指数函数在同一坐标系中的图象的相对位置与底数大小关系如下图所示,其中0<c<d<1<a<b.①在y轴右
侧,图象从上到下相应的底数由大变小;②在y轴左侧,图象从下到上相应的底数由大变小.即无论在y轴的左侧还是右侧,底数按逆时针方向变大.【注】速记口诀:指数增减要看清,抓住底数不放松;反正底数大于0,不等于1已表明
;底数若是大于1,图象从下往上增;底数0到1之间,图象从上往下减;无论函数增和减,图象都过(0,1)点.3.有关指数型函数的性质(1)求复合函数的定义域与值域形如xfya的函数的定义域就是()fx的定义域.求形如xfya的函数的值域,应先求出()fx的值域,再由单调
性求出xfya的值域.若a的范围不确定,则需对a进行讨论.求形如xyfa的函数的值域,要先求出xua的值域,再结合yfu的性质确定出xyfa的值域.(2)判断复合函数xyfa的单调性令u=f(x),x∈
[m,n],如果复合的两个函数uya与ufx的单调性相同,那么复合后的函数xfya在[m,n]上是增函数;如果两者的单调性相异(即一增一减),那么复合函数xfya在[m,n]上是减函数.(3)研
究函数的奇偶性一是定义法,即首先是定义域关于原点对称,然后分析式子()fx与f(−x)的关系,最后确定函数的奇偶性.二是图象法,作出函数的图象或从已知函数图象观察,若图象关于坐标原点或y轴对称,则函数具有奇偶性.考向一指数与指数幂的运算指数幂运算的一般原则(1)有括号的
先算括号里的,无括号的先做指数运算.(2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.
(5)有理数指数幂的运算性质中,其底数都大于零,否则不能用性质来运算.(6)将根式化为指数运算较为方便,对于计算的结果,不强求统一用什么形式来表示.如果有特殊要求,要根据要求写出结果.但结果不能同时含有根号和分数指数,也不能既有
分母又含有负指数.典例1化简并求值:(1)293341825125;(2)3232411113342abababab.【答案】(1)12;(2)ab.【解析】(1)92292334310334322118
25255252125;(2)11223233543232331411271111233333342abababababaabbababababab.【名
师点睛】把根式化为分数指数幂,再按照幂的运算法则进行运算即可.1.2213021273(2)2=482________.考向二与指数函数有关的图象问题指数函数y=ax(a>0,且a≠1)的图象变换如下:【注
】可概括为:函数y=f(x)沿x轴、y轴的变换为“上加下减,左加右减”.典例2函数y=ax-a(a>0,且a≠1)的图象可能是【答案】C【解析】当x=1时,y=a1-a=0,所以y=ax-a的图象必过定点(1,0),
结合选项可知选C.2.函数2exxfx的图像是A.B.C.D.考向三指数函数单调性的应用1.比较幂的大小的常用方法:(1)对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断;(2)对于底数不同,指数相同的两个幂的大
小比较,可以利用指数函数图象的变化规律来判断;(3)对于底数不同,且指数也不同的幂的大小比较,可先化为同底的两个幂,或者通过中间值来比较.2.解指数方程或不等式简单的指数方程或不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a的取值范围,并在必要时进行分类讨论.典例3设
232555322,,555abc,则,,abc的大小关系是A.acbB.abcC.cabD.bca【答案】A【解析】对于函数2()5xy,在其定义域
上是减函数,3255,32552255,即bc.在同一平面直角坐标系中画出函数3()5xy和函数2()5xy的图象,可知22553255,即a
c.从而bca.故A正确.错误!未找到引用源。【名师点睛】不管是比较指数式的大小还是解含指数式的不等式,若底数含有参数,需注意对参数的值分1a与01a两种情况讨论.3.设110ea,ln2b,1lgec(其中e2.71828是自
然对数的底数),则A.cbaB.abcC.acbD.bac典例4设函数11()7,0()22,0xxxfxx,若()1fa,则实数a的取值范围是A.(,1)B.(3,)C.(3,1)D.(,3)(1,)【
答案】C【解析】当0a时,不等式()1fa可化为1()712a,即1()82a,解得30a;当0a时,不等式()1fa可化为121a,所以01a.故a的取值范围是(3,1).故选C
.【名师点睛】利用指数函数的单调性,分别讨论当0a及0a时,a的取值范围,最后综合即可得出结果.4.若221mn,则A.11mnB.1122loglogmnC.ln0mnD.π1mn考向四指数型函数的性质及其应用1.指数型函数中参数的
取值或范围问题应利用指数函数的单调性进行合理转化求解,同时要特别注意底数a的取值范围,并当底数不确定时进行分类讨论.2.指数函数的综合问题要把指数函数的概念和性质同函数的其他性质(如奇偶性、周期性)相结合,同时要特别注意底数不确定时,对底数的分类讨论.典例5已知函数
11e12xfx,则是A.奇函数,且在上是增函数B.偶函数,且在上是增函数C.奇函数,且在上是减函数D.偶函数,且在上是减函数【答案】C【解析】易知函数()fx的定义域为R,关于原点对称,且11e1e12e12xxxfx
,则0fxfx,所以fx是奇函数,显然函数11e12xfx是减函数.故选C.5.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则A.f(x)与g(x)均为偶函数B.f(x)为奇
函数,g(x)为偶函数C.f(x)与g(x)均为奇函数D.f(x)为偶函数,g(x)为奇函数典例6若函数222,2log(),2xxfxxax的最小值为(2)f,则实数a的取值范围为A.0aB.0aC.0aD.0a【
答案】D【解析】当2x时,f(x)=2222xx,单调递减,∴f(x)的最小值为f(2)=1;当x>2时,f(x)=2logxa单调递增,若满足题意,只需2log1xa恒成立,即2xa恒成立,∴max(2)ax,∴a≥0.故选D.典例7函数221
2xxy的值域为________.【答案】(0,2]【解析】设222(1)11txxx,又由指数函数1()2ty为单调递减函数,即可求解.由题意,设222(1)11txxx,又由指数函数1()2ty为单调
递减函数,知当1t时,02y,即函数221()2xxy的值域为(0,2].6.若关于x的不等式1220xxa的解集包含区间0,1,则a的取值范围为A.7,2B.,1C.7,2D.,11.计算:1
14333122xxxA.3B.2C.2xD.12x2.若函数,则函数的值域是A.B.C.D.3.设0.61.50.60.6,0.6,1.5abc,则,,abc的大小关系是A.abcB.bacC.acbD.bca4.
函数的单调递减区间为A.B.C.D.5.函数1(1)xxayax的图象的大致形状是A.B.C.D.6.已知函数2(0)xfxx,其值域为D,在区间1,2上随机取一个数x,则xD的概率是A.12B.13C
.14D.237.已知实数,xy满足1122xy,则下列关系式中恒成立的是A.tantanxyB.22ln2ln1xyC.11xyD.33xy8.已知函数283640fxxx在[1,2)
上的值域为A,函数2xgxa在[1,2)上的值域为B.若xA是xB的必要不充分条件,则a的取值范围是A.4,B.14,4C.14,4D.14,9.已知)(xf是定义域为R的偶函数,且0x
时,xxf)21()(,则不等式21)(xf的解集为A.)41,41(B.)21,21(C.)2,2(D.)1,1(10.函数与在同一平面直角坐标系下的图象大致是A.B.C.D.11.设函数2afxx与
(1xgxaa且2a)在区间0,上具有不同的单调性,则0.21Ma与0.11Na的大小关系是A.MNB.MNC.MND.MN12.定义新运算:当时,;当时,.设函数
,则在上的值域为A.B.C.D.13.设函数21,25,2xxfxxx,若互不相等的实数,,abc满足fafbfc,则222abc的取值范围是A.16,32B.18,34C.17,35D.
6,714.已知函数2()1xfxa(0a且1a)的图象过定点P,则点P的坐标为_______.15.已知13aa,则1122aa=__________.16.已知函数2xya的定义
域为R,则实数a的取值范围是__________.17.已知函数221()log(1)1xaxfxxx,,,若[(0)]2ff,则实数a的值是_______.18.已知14742abc
,则111abc__________.19.若不等式对任意实数都成立,则实数的最大值为________.20.已知函数sincosfxaxbx,若ππ44fxfx,则函数13axby的图象恒过定点_____
_____.21.已知函数xfxab0,1aa的定义域和值域都是1,0,则ba__________.22.(1)1420316(21)(8)9;(2)2log351loglglne2100
25.23.已知函数1()934xxfxm.(1)若1m,求方程0fx的根;(2)若对任意1,1x,8fx恒成立,求m的取值范围.24.已知函数242xxaa
fxaa(0a且1a)是定义在R上的奇函数.(1)求a的值;(2)求函数fx的值域;(3)当1,2x时,220xmfx恒成立,求实数m的取值范围.1.(2019年高考全国Ⅰ卷文数)已
知0.20.32log0.2,2,0.2abc,则A.abcB.acbC.cabD.bca2.(2019年高考天津文数)已知0.223log7,log8,0.3abc,则a,b,c的大小关系为A.
cbaB.abcC.bcaD.cab3.(2019年高考浙江)在同一直角坐标系中,函数1xya,1(2log)ayx(a>0,且a≠1)的图象可能是4.(2019年高考全国Ⅲ卷文数)设fx是定义域为R的
偶函数,且在0,单调递减,则A.f(log314)>f(322)>f(232)B.f(log314)>f(232)>f(322)C.f(322)>f(232)>f(log314)D.f(232)>f(322)>f(log314)5.(年高考天津卷文科)已知1331
3711log,,log245abc,则,,abc的大小关系为A.abcB.bacC.cbaD.cab6.(年高考新课标I卷文科)设函数2010xxfxx,,,则满足12fxfx的x的取值范围是A.1,B.0
,C.10,D.0,7.(年高考北京卷)已知函数1()3()3xxfx,则()fxA.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数8.(年高考新课
标Ⅲ卷文科)已知4213332,3,25abc,则A.bacB.abcC.bcaD.cab9.(年高考天津卷文科)已知)(xf是定义在R上的偶函数,且在区间)0,(上单调递增,若
实数a满足)2()2(|1|ffa,则a的取值范围是A.)21,(B.),23()21,(C.)23,21(D.),23(10.(年高考新课标Ⅲ卷文科)设函数10()20xxxfxx,,,,则满足1()()12fxfx的
x的取值范围是.1.【答案】12【解析】由题意,根据实数指数幂的运算性质,可得:2213021273(2)248223213022333=[()]22223441
12992,故答案为12.2.【答案】A【解析】由2exxfx,可得01f,排除选项C,D;由指数函数图象的性质可得0fx恒成立,排除选项B,故选A.变式拓展【名师点睛】函数图象的辨识可从以下方面入手:
(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.3.【答案】B【解析】由题得1010ee1a,ln2lne1,b且b
>0,1lglg10ec,所以abc.故选B.【名师点睛】由题意结合指数函数、对数函数的性质确定a,b,c的范围,然后比较其大小即可.对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较,这就必须掌握一
些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.4.【答案】D【解析】因为221m
n,所以由指数函数的单调性可得mn,因为,mn的符号不确定,所以0,0mn时可排除选项A、B;3,12mn时,可排除选项C,由指数函数的性质可判断π1mn正确.故选D.【名师点睛】用特例代替题设所给的一般性条件,得出特殊结论,然后对各
个选项进行检验,从而作出正确的判断,这种方法叫做特殊法.若结果为定值,则可采用此法.特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法既可以提高做题速度和效率,又能提高准确性.5.【答案】D【解析】因为f(-x)
=3-x+3x=f(x),g(-x)=3-x-3x=-g(x),所以f(x)是偶函数,g(x)为奇函数.故选D.6.【答案】B【解析】由题得1222xxa在(0,1)上恒成立,设2,1,2xtt,所以121,2attt,,由于函数
1()2,1,2ftttt是增函数,所以12111af.故选B.1.【答案】D【解析】原式11143333122122xxxxx.故选D.2.【答案】A【解析】因为时,;时,,所以函数的值域是.故选A.3.【答案】B【解析】由
0.6xy的单调性可知:1.50.600.60.60.61,又0.601.51.51,cab.故选B.4.【答案】B【解析】由函数,结合复合函数的单调性知识可知,它的减区间,即为考点冲关的增区间.由二次函数的性质可得的增区间为
.故选B.5.【答案】A【解析】函数1(1)xxayax的定义域为,00,.当1x时,由题意可得0y,故可排除B,D;又当x时,由于1a,故y,故排除C.故选A
.【名师点睛】由函数的解析式判断函数图象的形状时,主要利用排除法进行.解题时要注意以下几点:(1)先求出函数的定义域,根据定义域进行排除;(2)利用函数的性质进行判断,即根据函数的单调性、奇偶性、对称性进行排除;(3)根据函数图象上的特殊点的函
数值进行判断或根据函数的变化趋势进行判断.6.【答案】B【解析】函数2(0)xfxx的值域为01(,),即01D(,),则在区间1,2上随机取一个数xxD,的概率101.213P=故选B.7.【答案】D【解析】由指数函数的
性质得1122xyxy,对于A,当3π3π44xy,时,满足xy,但tantanxy不成立.对于B,若22ln2ln1xy,则等价为22xy成立,当11xy,时,满足xy,但22xy不
成立.对于C,当32xy,时,满足xy,但11xy不成立.对于D,当xy时,33xy恒成立.故选D.【名师点睛】利用指数函数即可得出,xy的大小关系,进而判断出结论.本题考查了函数的单调性,考查了推理能力与计算能力,利用不等式的性质以及
函数的单调性是解决本题的关键.属于基础题.8.【答案】B【解析】因为fx在[1,2)上单调递增,所以12,0A,又函数2xgxa在[1,2)上单调递增,于是2,4Baa.因为xA是xB的必要不充分条件,所以B是A的真子集,故有212
40aa(等号不同时成立),得14,4a.故选B.9.【答案】D【解析】由题意得,当0x时,xxf)21()(,则不等式21)(xf,即11()22x,解得01x;
又因为函数)(xf是定义域为R的偶函数,当0x时,2xfx,则不等式21)(xf,即122x,解得10x,所以不等式21)(xf的解集为|11xx.故选D.10.【答案】D
【解析】+11122xxgx,由指数函数的图象知,将函数的图象向左平移一个单位,即可得到的图象,从而排除选项A,C;将函数的图象向上平移一个单位,即可得到的图象,从而排除选项B.故选D.11.【答案】D【解析】由题意,因为2afxx与
xgxa在区间0,上具有不同的单调性,则2a,所以0.211Ma,0.111Na,所以MN.故选D.12.【答案】C【解析】由题意得,函数,当时,;当时,,令,则,故在上的值域为.故选C.13.【答案】B【解析】画出
函数fx的大致图象如图所示.不妨令abc,则1221ab,则222ab.结合图象可得45c,故16232c.∴1822234abc.故选B.【名师点睛】解答本题时利用函数
图象进行求解,使得解题过程变得直观形象.解题中有两个关键:一是结合图象得到222ab;二是根据图象判断出c的取值范围,进而得到16232c的结果,然后根据不等式的性质可得所求的范围.14.【答案】(2,
2)【解析】由题意,令2x,可得22()12fxa,所以函数2(2)1xfa(0a且1a)的图象过定点(2,2)P.15.【答案】5【解析】由题意得21112223aaaa,∴21
1225aa,11220aa,11225aa.16.【答案】0a【解析】函数2xya的定义域为R,∴20xa恒成立,即2xa恒成立,20x,0a,故答案为0a.17.【
答案】2【解析】∵0(0)223f,∴[(0)](3)log2afff,∵[(0)]2ff,∴log22a,又0,a则a=2.故答案为2.18.【答案】3【解析】由题设可得111214,27,24abc,则1121472a
b,即111113222422ababc,即1113abc.故答案为3.19.【答案】【解析】设,不等式对任意实数都成立,只需满足即可,,所以,因此实数的最大值为.20.【答案
】1,3【解析】∵ππ44fxfx,∴函数fx图象的对称轴为π4x,∴π02ff,即ba,∴0ab.在13axby中,令1x,则133aby.∴函数13axby的图象恒过定点1,3.故答案为1,
3.21.【答案】4【解析】当1a时,函数fx单调递增,所以函数fx的图象过点(−1,−1)和点(0,0),所以1010abab,该方程组无解;当01a时,函数fx单调递减,所以函数fx的图象过点(−1,0)和点(0,−
1),所以1001abab,解得122ab.所以4ba.22.【答案】(1)2;(2)72【解析】(1)由题意,根据实数指数幂的运算性质,可得142031631(21)(8)12944.(2)根据对数的运算性质
,可得2log351loglglne21725=212002+32.23.【答案】(1)3log4x;(2)4(,]3.【解析】(1)1m时,12()934(3)3340xxxxfx,可得(34)(31)0xx,30x,34x,解得
3log4x.(2)令3xt,1,1x,1[,3]3t.由()8fx,可得2348tmt,43mtt对1[,3]3t恒成立,4244tt,当且仅当4tt,即2t时,4tt取得最小值为4,
34m,故43m,m的取值范围为4(,]3.24.【答案】(1)2a;(2)1,1;(3)10,3.【解析】(1)∵fx是R上的奇函数,∴fxfx,即242422xxxxaaaaaaaa.整
理可得2a.(注:本题也可由00f解得2a,但要进行验证)(2)由(1)可得22221212222121xxxxxfx,∴函数fx在R上单调递增,又211x,∴22021x,∴211121x.∴函数fx的值域为1,1
.(3)当1,2x时,21021xxfx.由题意得212221xxxmfxm在1,2x时恒成立,∴212221xxxm在1,2x时恒成立.令2113xtt,则有2121ttmttt,∵当13
t时函数21ytt为增函数,∴max21013tt.∴103m.故实数m的取值范围为10,3.【名师点睛】解决函数中恒成立问题的常用方法:(1)分离参数法.若所求范围的参数能分离出来,则可将问题转
化为afx(或afx)恒成立的问题求解,此时只需求得函数fx的最大(小)值即可.若函数的最值不可求,则可利用函数值域的端点值表示.(2)若所求的参数不可分离,则要根据方程根的分布或函数的单调性并结合函数的图象,将问题转化为不
等式进行处理.直通高考1.【答案】B【解析】22log0.2log10,a0.20221,b0.3000.20.21,c即01,c则acb.故选B.【名师点睛】本题考查指数和对数大小的比较,考查了数学
运算的素养.采取中间量法,根据指数函数和对数函数的单调性即可比较大小.2.【答案】A【解析】∵0.200.30.31c,22log7log42a,331log8log92b,∴cba.故
选A.【名师点睛】利用指数函数、对数函数的单调性时,要根据底数与1的大小进行判断.3.【答案】D【解析】当01a时,函数xya的图象过定点(0,1)且单调递减,则函数1xya的图象过定点(0,1)且单调递增,函数1lo
g2ayx的图象过定点1(,0)2且单调递减,D选项符合;当1a时,函数xya的图象过定点(0,1)且单调递增,则函数1xya的图象过定点(0,1)且单调递减,函数1log2ayx
的图象过定点1(,02)且单调递增,各选项均不符合.综上,选D.【名师点睛】易出现的错误:一是指数函数、对数函数的图象和性质掌握不熟练,导致判断失误;二是不能通过讨论a的不同取值范围,认识函数的单调性.4.【答案】C【解析】fx是定义域为R的偶函数,3
31(log)(log4)4ff.223303322333log4log31,1222,log422,又fx在(0,+∞)上单调递减,∴23323(log4)22fff
,即23323122log4fff.故选C.【名师点睛】本题主要考查函数的奇偶性、单调性,先利用函数的奇偶性化为同一区间,再利用中间量比较自变量的大小,最后
根据单调性得到答案.5.【答案】D【解析】由题意可知:3337log3loglog92,即12a,11031110444,即01b,133317loglog5log52,即ca,综上可得:
cab.故本题选择D选项.【名师点睛】由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比
较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.6.【答案】D【解析】将函数fx的图象画出来,观察图象可知
会有2021xxx,解得0x,所以满足12fxfx的x的取值范围是0,,故选D.【思路分析】首先根据题中所给的函数解析式,将函数图象画出来,从图中可以发现:若有12fxfx成立,一定会有2021xx
x,从而求得结果.【名师点睛】该题考查的是通过函数值的大小来推断自变量的大小关系,从而求得相关的参数的值的问题,在求解的过程中,需要利用函数解析式画出函数图象,从而得到要出现函数值的大小,绝对不是常函数,从而确定出自变量所处的
位置,结合函数值的大小,确定出自变量的大小,从而得到其等价的不等式组,最后求得结果.7.【答案】B【解析】113333xxxxfxfx,所以该函数是奇函数,并且3xy是增函数,13xy
是减函数,根据增函数−减函数=增函数,可知该函数是增函数,故选B.【名师点睛】本题属于基础题型,根据fx与fx的关系就可以判断出函数的奇偶性,利用函数的四则运算判断函数的单调性,如:增函数+增函
数=增函数,增函数−减函数=增函数.8.【答案】A【解析】因为423324a,1233255c,所以根据同一坐标系中指数函数的性质可得222333345,即bac,故选A.(本题也可利用函数23yx在[0,)上是增函
数来判断)【技巧点拨】比较指数的大小常常根据三个数的结构,联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及对数,则联系对数的单调性来解决.9.【答案】C【解析】由题意得1|1||1||1
|2113(2)(2)2222|1|222aaaffaa.故选C.【名师点睛】不等式中的数形结合问题,在解题时既要想形又要以形助数,常见的“以形助数”的方法有:(1)借助数轴
,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补运算非常有效.(2)借助函数图象性质,利用函数图象分析问题和解决问题是数形结合的基本方法,需注意的问题是准确把握代数式的几何意义实现“数”向“形”的转
化.10.【答案】1(,)4【解析】由题意得:当12x时,12221xx恒成立,即12x;当102x时,12112xx恒成立,即102x;当0x时,1111124xxx,
即104x.综上,x的取值范围是1(,)4.