人教版七年级数学上册11《整式的加减(二)》知识讲解+巩固练习(基础版)(含答案)

DOC
  • 阅读 22 次
  • 下载 0 次
  • 页数 4 页
  • 大小 109.500 KB
  • 2022-11-19 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
人教版七年级数学上册11《整式的加减(二)》知识讲解+巩固练习(基础版)(含答案)
可在后台配置第一页与第二页中间广告代码
人教版七年级数学上册11《整式的加减(二)》知识讲解+巩固练习(基础版)(含答案)
可在后台配置第二页与第三页中间广告代码
在线阅读已结束,您可下载此文档阅读剩下的2 已有0人下载 下载文档2.00 元
/ 4
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】人教版七年级数学上册11《整式的加减(二)》知识讲解+巩固练习(基础版)(含答案).doc,共(4)页,109.500 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-24020.html

以下为本文档部分文字说明:

整式的加减(二)—去括号与添括号(基础)【学习目标】1.掌握去括号与添括号法则,充分注意变号法则的应用;2.会用整式的加减运算法则,熟练进行整式的化简及求值.【要点梳理】【高清课堂:整式的加减(二)--去括号与添括号388394去括号法则】要点一、去括号法则如果括号外的因数是正数,去括号后

原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可

以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改

变式子的值,它属于多项式的恒等变形.要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面

的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()abcabc添括号去括号,()ab

cabc添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同

类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.去括号:(1)d-2(3a-2b+3c);(2)-(-xy-1)+(-x+y).【答案与

解析】(1)d-2(3a-2b+3c)=d-(6a-4b+6c)=d-6a+4b-6c;(2)-(-xy-1)+(-x+y)=xy+1-x+y.【总结升华】去括号时.若括号前有数字因数,应先把它与括号内各项相乘,再去括号.举一反三【变式1】去掉下列各式中的括号:

(1).8m-(3n+5);(2).n-4(3-2m);(3).2(a-2b)-3(2m-n).【答案】(1).8m-(3n+5)=8m-3n-5.(2).n-4(3-2m)=n-(12-8m)=n-12+

8m.(3).2(a-2b)-3(2m-n)=2a-4b-(6m-3n)=2a-4b-6m+3n.【变式2】(2015•济宁)化简﹣16(x﹣0.5)的结果是()A.﹣16x﹣0.5B.﹣16x+0.5C.16x﹣8D.﹣16x+8【答案】D类型二

、添括号2.在各式的括号中填上适当的项,使等式成立.(1).2345()()xyzt2()x23()xy;(2).23452()2()xyztxx23()45()xyzt.【答案】(1)23

45xyzt,2345xyzt,345yzt,45zt.(2)345yzt,345yzt,45zt,23xy.【解析】(1)2345xyzt(2345)xyzt(2345)xyzt2(345)xyzt

23(45)xyzt;(2)2345xyzt2(345)xyzt2(345)xyzt23(45)xyzt45(23)ztxy.【总结升华】在括号里填上适当的项,要特别注意括号前

面的符号,考虑是否要变号.【高清课堂:整式的加减(二)--去括号与添括号388394添括号练习】举一反三【变式】1abcda;22;xyz22222223;4abababababaa

.【答案】bcd;2xyz;ab;2bb.类型三、整式的加减3.(2016•邢台二模)设A,B,C均为多项式,小方同学在计算“A﹣B”时,误将符号抄错而计算成了“A+B”,得到结果是C,其中A=x2+x﹣1,C

=x2+2x,那么A﹣B=()A.x2﹣2xB.x2+2xC.﹣2D.﹣2x【思路点拨】根据题意得到B=C﹣A,代入A﹣B中,去括号合并即可得到结果.【答案】C.【解析】解:根据题意得:A﹣B=A﹣(C﹣A)=A﹣C+A=2

A﹣C=2(x2+x﹣1)﹣(x2+2x)=x2+2x﹣2﹣x2﹣2x=﹣2,故选C.【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项.类型四、化简求值4.先化简,再求各式的值:22131222,2,;22333xxyxyxy其中【答案

与解析】原式=2221312232233xxyxyxy,当22,3xy时,原式=22443(2)()66399.【总结升华】化简求值题一般采用“一化二代三计算”,此类题的书写

格式一般为:当„„时,原式=?举一反三【变式1】先化简再求值:(-x2+5x+4)+(5x-4+2x2),其中x=-2.【答案】(-x2+5x+4)+(5x-4+2x2)=-x2+5x+4+5x-4+2x2=x2+10x.当x=-2

,原式=(-2)2+10×(-2)=-16.【变式2】先化简,再求值:3(2)[3()]2yxxxyx,其中,xy化为相反数.【答案】3(2)[3()]236322()yxxxyxyxxxyxxy因为,xy互为相反数,所以0xy所以3(

2)[3()]22()200yxxxyxxy5.已知2xy,3xy,求整式(310)[5(223)]xyyxxyyx的值.【答案与解析】由2xy,3xy很难求出x,y的值,可以先把整式化简,然后把xy,xy分别作为一个整体代入求出整式的值.原式310

(5223)xyyxxyyx3105223xyyxxyyx5310232xxyyxyxy88xyxy8()xyxy.把2xy,3xy代入得,原式83(2)24222.【总结升华】求整式的值,一般先化简

后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便.举一反三【变式】已知代数式2326yy的值为8,求2312yy的值.【答案】∵

23268yy,∴2322yy.当2322yy时,原式=211(32)121222yy.6.如果关于x的多项式22(8614)(865)xaxxx的值与x无关.你知道a应该取什么值

吗?试试看.【答案与解析】所谓多项式的值与字母x无关,就是合并同类项,结果不含有“x”的项,所以合并同类项后,让含x的项的系数为0即可.注意这里的a是一个确定的数.(8x2+6ax+14)-(8x2+6x+5)=8x2+6ax+14-8x2-6x-5=6ax-6x+9=(6a-

6)x+9由于多项式(8x2+6ax+14)-(8x2+6x+5)的值与x无关,可知x的系数6a-6=0.解得a=1.【总结升华】本例解题的题眼是多项式的值与字母x无关.“无关”意味着合并同类项后,其结果不含“x”的项.

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 111
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?