2022年黑龙江省大庆市中考数学试卷

DOC
  • 阅读 98 次
  • 下载 0 次
  • 页数 36 页
  • 大小 813.500 KB
  • 2022-11-18 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档10.00 元 加入VIP免费下载
此文档由【我爱分享】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
2022年黑龙江省大庆市中考数学试卷
可在后台配置第一页与第二页中间广告代码
2022年黑龙江省大庆市中考数学试卷
可在后台配置第二页与第三页中间广告代码
2022年黑龙江省大庆市中考数学试卷
可在后台配置第三页与第四页中间广告代码
2022年黑龙江省大庆市中考数学试卷
2022年黑龙江省大庆市中考数学试卷
还剩10页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 36
  • 收藏
  • 违规举报
  • © 版权认领
下载文档10.00 元 加入VIP免费下载
文本内容

【文档说明】2022年黑龙江省大庆市中考数学试卷.doc,共(36)页,813.500 KB,由我爱分享上传

转载请保留链接:https://www.ichengzhen.cn/view-20871.html

以下为本文档部分文字说明:

第1页(共36页)2022年黑龙江省大庆市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.(3分)2022的倒数是(

)A.B.2022C.﹣2022D.﹣2.(3分)地球上的陆地面积约为149000000km2,数字149000000用科学记数法表示为()A.1.49×107B.1.49×108C.1.49×109D.1.49×10103.(3分)实数c,d在数轴

上的对应点如图所示,则下列式子正确的是()A.c>dB.|c|>|d|C.﹣c<dD.c+d<04.(3分)观察下列图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(3分)小明同学对数据12、22、

36、4■,52进行统计分析,发现其中一个两位数的个位数字被墨水污染已无法看清,则下列统计量与被污染数字无关的是()A.平均数B.标准差C.方差D.中位数6.(3分)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是()A.60πB.65π

C.90πD.120π7.(3分)如图,将平行四边形ABCD沿对角线BD折叠,使点A落在E处.若∠1=56°,∠2=42°,则∠A的度数为()第2页(共36页)A.108°B.109°C.110°D.111°8.(3分)下列说法不正确的是()A.有两个角是锐角的三

角形是直角或钝角三角形B.有两条边上的高相等的三角形是等腰三角形C.有两个角互余的三角形是直角三角形D.底和腰相等的等腰三角形是等边三角形9.(3分)平面直角坐标系中,点M在y轴的非负半轴上运动,点N在x轴上运动,满足OM+ON=8.点Q为线段

MN的中点,则点Q运动路径的长为()A.4πB.8C.8πD.1610.(3分)函数y=[x]叫做高斯函数,其中x为任意实数,[x]表示不超过x的最大整数.定义{x}=x﹣[x],则下列说法正确的个数为()①[﹣4.1]=﹣4;②{3.5}=0.5;③高斯函数y=[x]中,当

y=﹣3时,x的取值范围是﹣3≤x<﹣2;④函数y={x}中,当2.5<x≤3.5时,0≤y<1.A.0B.1C.2D.3二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3

分)函数y=的自变量x的取值范围为.12.(3分)写出一个过点D(0,1)且y随x增大而减小的一次函数关系式.13.(3分)满足不等式组的整数解是.14.(3分)不透明的盒中装有三张卡片,编号分别为1,2

,3.三张卡片质地均匀,大小、形状完全相同,摇匀后从中随机抽取一张卡片记下编号,然后放回盒中再摇匀,再从盒中随机取出一张卡片,则两次所取卡片的编号之积为奇数的概率为.15.(3分)已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数

t的值为.第3页(共36页)16.(3分)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是.17.(3分)已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m的值为.18.(3分)如图,正方形ABCD中,点E,F分别是边AB,BC上的两个动点,且正方形ABCD

的周长是△BEF周长的2倍.连接DE,DF分别与对角线AC交于点M,N,给出如下几个结论:①若AE=2,CF=3,则EF=4;②∠EFN+∠EMN=180°;③若AM=2,CN=3,则MN=4;④若=2,BE=3,则EF=4.其

中正确结论的序号为.三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(4分)计算:|﹣2|×(3﹣π)0+.20.(4分)先化简,再求值:(﹣a)÷.其中a=2b,b≠0.21.(5

分)某工厂生产某种零件,由于技术上的改进,现在平均每天比原计划多生产20个零件,现在生产800个零件所需时间与原计划生产600个零件所需时间相同.求现在平均每天生产多少个零件?22.(6分)如图,为了

修建跨江大桥,需要利用数学方法测量江的宽度AB.飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CD为1000m,第4页(共36页)且点D,A,B在同一水平直线上,试求这条江的宽度AB(结果精确到1m,参考数据:≈1.41

42,≈1.7321).23.(7分)中华文化源远流长,中华诗词寓意深广,为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩不低于50分.为了更好地了解本次海选比赛的成绩分布情况.随机选取其中200名学生的海选比赛成绩(总分10

0分)作为样本进行整理,得到海选成绩统计表与扇形统计图如下:抽取的200名学生成绩统计表组别海选成绩人数A组50≤x<6010B组60≤x<7030C组70≤x<8040D组80≤x<90aE组90≤x≤10070请根据所给信息解答下列问题:(1)填空:①a=,②b=,③θ=度;

(2)若把统计表每组中各个成绩用这组数据的中间值代替(例如:A组数据中间值为55分),请估计被选取的200名学生成绩的平均数;(3)规定海选成绩不低于90分记为“优秀”,请估计该校参加这次海选比赛的2000名学生中成绩“优秀”的有多少

人?第5页(共36页)24.(7分)如图,在四边形ABDF中,点E,C为对角线BF上的两点,AB=DF,AC=DE,EB=CF.连接AE,CD.(1)求证:四边形ABDF是平行四边形;(2)若AE=AC,求证:AB=DB.2

5.(7分)已知反比例函数y=和一次函数y=x﹣1,其中一次函数图象过(3a,b),(3a+1,b+)两点.(1)求反比例函数的关系式;(2)如图,函数y=x,y=3x的图象分别与函数y=(x>0)图象交于A,B两点,在y轴上是否存在点P,使得△ABP周长最小?若存在,求出周长的最小值;若不存在

,请说明理由.第6页(共36页)26.(8分)某果园有果树60棵,现准备多种一些果树提高果园产量.如果多种树,那么树之间的距离和每棵果树所受光照就会减少,每棵果树的平均产量随之降低.根据经验,增种10棵果树时,果园内的每棵果树

平均产量为75kg.在确保每棵果树平均产量不低于40kg的前提下,设增种果树x(x>0且x为整数)棵,该果园每棵果树平均产量为ykg,它们之间的函数关系满足如图所示的图象.(1)图中点P所表示的实际意义是,每增种1棵

果树时,每棵果树平均产量减少kg;(2)求y与x之间的函数关系式,并直接写出自变量x的取值范围;(3)当增种果树多少棵时,果园的总产量w(kg)最大?最大产量是多少?27.(9分)如图,已知BC是△ABC外接圆⊙O的直径,BC

=16.点D为⊙O外的一点,∠ACD=∠B.点E为AC中点,弦FG过点E,EF=2EG,连接OE.(1)求证:CD是⊙O的切线;(2)求证:(OC+OE)(OC﹣OE)=EG•EF;(3)当FG∥BC时,求弦FG的长.第7页(共3

6页)28.(9分)已知二次函数y=x2+bx+m图象的对称轴为直线x=2,将二次函数y=x2+bx+m图象中y轴左侧部分沿x轴翻折,保留其他部分得到新的图象C.(1)求b的值;(2)①当m<0时,图C与x轴交于点M,N(M在N的左侧),

与y轴交于点P.当△MNP为直角三角形时,求m的值;②在①的条件下,当图象C中﹣4≤y<0时,结合图象求x的取值范围;(3)已知两点A(﹣1,﹣1),B(5,﹣1),当线段AB与图象C恰有两个公共点时,直接写出m的

取值范围.第8页(共36页)2022年黑龙江省大庆市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.(3分)2022的倒数

是()A.B.2022C.﹣2022D.﹣【分析】根据倒数的意义,即可解答.【解答】解:2022的倒数是,故选:A.【点评】本题考查了倒数,熟练掌握倒数的意义是解题的关键.2.(3分)地球上的陆地面积约为149000000km2,数字

149000000用科学记数法表示为()A.1.49×107B.1.49×108C.1.49×109D.1.49×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数

点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:149000000=1.49×108,故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的

表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)实数c,d在数轴上的对应点如图所示,则下列式子正确的是()A.c>dB.|c|>|d|C.﹣c<dD.c+d<0【分析】根据实数c,d在数轴上的对应点的位

置可知,c<0,d>0且|c|<|d|,然后逐一判断即可解答.【解答】解:由题意得:c<0,d>0且|c|<|d|,第9页(共36页)A、c<d,故A不符合题意;B、|c|<|d|,故B不符合题意;C、﹣c<d,故C符合题意;D、c+d>0,故D不符合题意;故选:C.【点评】本题考查

了实数与数轴,绝对值,根据实数c,d在数轴上的对应点的位置得出:c<0,d>0且|c|<|d|是解题的关键.4.(3分)观察下列图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念

进行判断即可.【解答】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.是轴对称图形,不是中心对称图形,故本选项不符合题意;C.不是轴对称图形,是中心对称图形,故本选项不符合题意;D.既是轴对称图形,又是中心对称图形,故本

选项符合题意.故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.5.(3分)小明同学对数据1

2、22、36、4■,52进行统计分析,发现其中一个两位数的个位数字被墨水污染已无法看清,则下列统计量与被污染数字无关的是()A.平均数B.标准差C.方差D.中位数【分析】利用平均数、中位数、方差和标准差的定义

对各选项进行判断.【解答】解:这组数据的平均数、方差和标准差都与被涂污数字有关,而这组数据的中位数为36,与被涂污数字无关.故选:D.第10页(共36页)【点评】本题主要考查方差、标准差、中位数和平均数,解题的关键是掌握中位数的定义.6

.(3分)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是()A.60πB.65πC.90πD.120π【分析】先利用勾股定理求出圆锥侧面展开图扇形的半径,利用侧面展开图与底面圆的关系求出侧面展开图的弧长,再利用扇形面积公式即可求出圆

锥侧面展开图的面积.【解答】解:圆锥侧面展开图扇形的半径为:=13,其弧长为:2×π×5=10π,∴圆锥侧面展开图的面积为:=65π.故选:B.【点评】本题主要考查圆锥的计算,掌握侧面展开图与底面圆的关系是解题关键.7.(3分)如

图,将平行四边形ABCD沿对角线BD折叠,使点A落在E处.若∠1=56°,∠2=42°,则∠A的度数为()A.108°B.109°C.110°D.111°【分析】由平行四边形的性质和折叠的性质得∠ABD=∠CDB=∠EBD,再由三角形的外角性质得∠ABD=∠CDB

=28°,然后由三角形内角和定理即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABD=∠CDB,由折叠的性质得:∠EBD=∠ABD,∴∠ABD=∠CDB=∠EBD,∵∠1=∠CDB+∠EBD=56°,∴∠ABD=∠CDB=28°

,∴∠A=180°﹣∠2﹣∠ABD=180°﹣42°﹣28°=110°,故选:C.第11页(共36页)【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理等知识,熟练掌握平行四边形的性质和折叠的性质是解题

的关键.8.(3分)下列说法不正确的是()A.有两个角是锐角的三角形是直角或钝角三角形B.有两条边上的高相等的三角形是等腰三角形C.有两个角互余的三角形是直角三角形D.底和腰相等的等腰三角形是等边三角形【分析】根据直角三角形概念可判断A,C,由等腰三角形,等边三角

形定义可判断B,D.【解答】解:∵有两个角是锐角的三角形,第三个角可能是锐角,直角或钝角,∴有两个角是锐角的三角形可能是锐角三角形,直角三角形或钝角三角形;故A不正确,符合题意;有两条边上的高相等的三角形是等腰三角形,故B正确,不符合题意;有两个角互余的三角形是直角三角形,故C正确,不

符合题意;底和腰相等的等腰三角形是等边三角形,故D正确,不符合题意;故选:A.【点评】本题考查三角形及分类,掌握直角三角形,等腰三角形,等边三角形等概念是解题的关键.9.(3分)平面直角坐标系中,点M在y轴的非负半轴上运动,点N在x轴上运动,满足OM+ON=8.点Q为线段MN的中点

,则点Q运动路径的长为()A.4πB.8C.8πD.16【分析】分两种情形:当点N在x轴的正半轴上时,过点Q作QR⊥ON于点R,QT⊥OM于点T.设Q(x,y).判断出点Q的运动轨迹,同法求出点Q在x轴的负半轴上时,点Q的运动轨迹的长,可得结论.【解答】解:如图,当点N在x轴的正

半轴上时,过点Q作QR⊥ON于点R,QT⊥OM于点T.设Q(x,y).第12页(共36页)∵QM=QN,QT∥ON,QR∥OM,∴QT=ON,QR=OM,∴QT+QR=(OM+ON)=4,∴x+y=4,∴y=﹣x+4,∴点Q在直线y=﹣x+4上运动,∵直线y=﹣x+y与坐标轴交于(

0,4),(4,0),∴点Q运动路径的长==4,当点N在x轴的负半轴上时,同法可得点Q运动路径的长==4,综上所述,点Q的运动路径的长为8,故选:B.【点评】本题考查轨迹,三角形中位线定理,一次函数的性质等知识,解题的关键是正确寻找点Q的运动轨迹,学会构建一次函数,探究轨迹,属于中考

常考题型.10.(3分)函数y=[x]叫做高斯函数,其中x为任意实数,[x]表示不超过x的最大整数.定义{x}=x﹣[x],则下列说法正确的个数为()①[﹣4.1]=﹣4;②{3.5}=0.5;③高斯函数

y=[x]中,当y=﹣3时,x的取值范围是﹣3≤x<﹣2;④函数y={x}中,当2.5<x≤3.5时,0≤y<1.A.0B.1C.2D.3【分析】①根据“定义[x]为不超过x的最大整数”进行计算;②根据定义{x}=x﹣[x]进行计算

;第13页(共36页)③根据“定义[x]为不超过x的最大整数”进行计算;④可以代入特殊值或边界点确定y的取值.【解答】解:①根据题意可得:[﹣4.1]=﹣5,错误;②∵[3.5]=3,∴{3.5}=3.5﹣[3.5]=3.5﹣3=0.5,正确;③高斯

函数y=[x]中,当y=﹣3时,x的取值范围是﹣3≤x<﹣2,正确;④函数y={x}=x﹣[x]中,在2.5<x≤3.5中取x=3.5时,y=3.5﹣3=0.5,当x=2.99时,y=2.99﹣2=0.99,所以当2.5<x≤3.5时,0.5≤y<1,错误.正确的命题有②③.故选:C.【点评】

本题考查了新定义:取整函数和一元一次不等式的应用,解决本题的关键是理解新定义.新定义解题是近几年常考的题型.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)函数y=的自变量x的取值范围为x≥﹣.【分析】根据二次

根式有意义的条件:被开方数是非负数.列不等式求x的范围.【解答】解:根据题意得:2x+3≥0,解得:x≥﹣.【点评】主要考查了函数自变量的取值范围的确定.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表

达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.(3分)写出一个过点D(0,1)且y随x增大而减小的一次函数关系式y=﹣x+1(答案不唯一).【分析】先设一次函数关系式为:y=kx+b,根据增减性可知k<0,

然后再把D(0,1)代入关系式进行计算即可解答.【解答】解:设一次函数关系式为:y=kx+b,∵y随x增大而减小,第14页(共36页)∴k<0,取k=﹣1,∵一次函数过点D(0,1),∴把D(0,﹣1)代入y=﹣x+b中可得:﹣1=b,∴一次函数关系式为:y=﹣x+1,故答案为:y=﹣x+1(

答案不唯一).【点评】本题考查了一次函数的性质,一次函数图象上点的坐标特征,熟练掌握一次函数的性质是解题的关键.13.(3分)满足不等式组的整数解是2.【分析】按照解一元一次不等式组的步骤,进行计算即可解答.【解答】解:,解不等式①得:x≤2.5,解不等式②得:x>1,∴原不等式组的解集为:1<

x≤2.5,∴该不等式组的整数解为:2,故答案为:2.【点评】本题考查了一元一次不等式组的整数解,熟练掌握解一元一次不等式组是解题的关键.14.(3分)不透明的盒中装有三张卡片,编号分别为1,2,3.三张卡片质地均匀,大小、形状完全相同,摇匀后从中随机抽取一张

卡片记下编号,然后放回盒中再摇匀,再从盒中随机取出一张卡片,则两次所取卡片的编号之积为奇数的概率为.【分析】画树状图,共有9种等可能的结果,其中两次所取卡片的编号之积为奇数的结果有4种,再由概率公式求解即可.【解答】解:画树状图如下:第15页(共36页)共有9种等

可能的结果,其中两次所取卡片的编号之积为奇数的结果有4种,∴两次所取卡片的编号之积为奇数的概率为,故答案为:.【点评】此题考查了树状图法求概率.正确画出树状图是解题的关键,用到的知识点为:概率=所求情况数与总

情况数之比.15.(3分)已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为或﹣..【分析】根据完全平方公式a2±2ab+b2=(a±b)2,可得(2t﹣1)ab=±(2×2)ab,计算即

可得出答案.【解答】解:根据题意可得,(2t﹣1)ab=±(2×2)ab,即2t﹣1=±4,解得:t=或t=.故答案为:或﹣.【点评】本题主要考查了完全平方公式,熟练掌握完全平方公式进行求解是解决本题的关键.16.(3

分)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是49.第16页(共36页)【分析】从数字找规律,进行计算即可解答.【解答】解:由题意得:第一个图案中的“”的个数是:4+3×0,第二个图案中的“”的个数是:7=4+3×1,第三个图案中的“”的个数是:10=4+3×2

,...∴第16个图案中的“”的个数是:4+3×15=49,故答案为:49.【点评】本题考查了规律型:图形的变化类,从数字找规律是解题的关键.17.(3分)已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m的值为1或﹣.【分析】函数y=mx2+

3mx+m﹣1的图象与坐标轴恰有两个公共点,分情况讨论,①过坐标原点,m﹣1=0,m=1,②与x、y轴各一个交点,得出Δ=0,m≠0.【解答】解:∵函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,①过坐标原点,m﹣1=0,m=1,②与x、y轴各一个交点,∴Δ=0,m≠0,(3m)2﹣

4m(m﹣1)=0,解得m=0或m=﹣,综上所述:m的值为1或﹣.【点评】本题考查抛物线与x轴的交点、二次函数的性质,掌握函数的图象与坐标轴恰有两个公共点的情况,看清题意,分情况讨论是解题关键.18.(3分)如图,正方形ABCD中,点E,F分别是边AB,BC上的两个动点,且正方形第

17页(共36页)ABCD的周长是△BEF周长的2倍.连接DE,DF分别与对角线AC交于点M,N,给出如下几个结论:①若AE=2,CF=3,则EF=4;②∠EFN+∠EMN=180°;③若AM=2,CN=3,则MN=4;④若=2,BE=3,则EF=4.其中正确结论的

序号为②.【分析】根据已知条件可得EF=AE+FC,即可判断①,进而推出∠EDF=45°,判断②正确,作DG⊥EF于点G,连接GM,GN,证明△GMN是直角三角形,结合勾股定理验证③,证明∠BEF=∠MNG=30°,即可判断④.【解答】解:∵正方形ABCD的周长是△BEF周长的2倍

,∴BE+BF+EF=AB+BC,∴EF=AE+FC,若AE=2,CF=3,则EF=2+3=5,故①错误;如图,在BA的延长线上取点H,使得AH=CF,在正方形ABCD中,AD=CD,∠HAD=∠FCD=90°,在△AHD和△CFD中,第18页(共36页),∴△AHD≌△CFD(SAS),∴∠CD

F=∠ADH,HD=DF,∠H=∠DFC,又∵EF=AE+CF,∴EF=AE+AH=EH,在△DEH和△DEF中,,∴△DEH≌△DEF(SSS),∴∠HDE=∠FDE,∠H=∠EFD,∠HED=∠FED,∵∠CDF+∠ADF=∠A

DH+∠ADF=∠HDF=90°∴∠EDF=∠HDE=45°,∵∠H=∠DFC=∠DFE,∠EMN=∠HED+∠EAM=45°+∠DEF,∴∠EFN+∠EMN=∠DFC+45°+∠DEF=∠DFC+∠ED

F+∠DEF=180°,则∠EFN+∠EMN=180°,故②正确;如图,作DG⊥EF于点G,连接GM,GN,在△AED和△GED中,,∴△AED≌△GED(AAS),同理,△GDF≌△CDF(AAS),∴AG=DG=CF,∠ADE=∠GDE,∠GDF=∠CDF,第19页(共3

6页)∴点A,G关于DE对称轴,C,G关于DF对称,∴GM=AM,GN=CN,∠EGM=∠EAM=45°,∠NGF=∠NCF=45°,∴∠MGN=90°,即△GMN是直角三角形,若AM=2,CN=3,∴GM=2,GN=3,在Rt△GMN中,MN==,

故③错误;∵MG=AM,且=2,BE=3,在Rt△GMN中,sin∠MNG===,∴∠MNG=30°,∵∠EFN+∠EMN=180°,∠EMN+∠AME=180°,且∠CFN=∠EFN,∴∠AME=∠CFN,∴2∠AEM=2∠CFN,即∠AMG=∠CFG

,∴∠GMN=∠BFE,∴∠BEF=∠MNG=30°,∴cos∠BEF=cos∠MNG==,∴EF=2,故④错误,综上,正确结论的序号为②,故答案为:②.【点评】本题考查了正方形的性质,轴对称的性质,解直角三角形,全等三角形的性质与判定,题目有一定综合性,通过添加

辅助线构造全等三角形是解题关键.三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(4分)计算:|﹣2|×(3﹣π)0+.【分析】先化简各式,然后再进行计算即可解答.【解答】解:|﹣2|×(3﹣π)0+=

(2﹣)×1+(﹣2)第20页(共36页)=2﹣﹣2=﹣.【点评】本题考查了实数的运算,零指数幂,绝对值,立方根,估算无理数的大小,准确熟练地化简各式是解题的关键.20.(4分)先化简,再求值:(﹣a)÷.其中a=2b,b≠0.【分析】先算括号里,再

算括号外,然后把a=2b代入化简后的式子进行计算即可解答.【解答】解:(﹣a)÷=•=•=,当a=2b时,原式===.【点评】本题考查了分式的化简求值,熟练掌握因式分解是解题的关键.21.(5分)某工厂生产某种零件,由于技

术上的改进,现在平均每天比原计划多生产20个零件,现在生产800个零件所需时间与原计划生产600个零件所需时间相同.求现在平均每天生产多少个零件?【分析】设现在平均每天生产x个零件,根据现在生产800个零件所需时间与原计划生产600个零件所需时间相同得:=,解方程并检验,即可得答

案.【解答】解:设现在平均每天生产x个零件,根据题意得:=,解得x=80,经检验,x=80是原方程的解,且符合题意,∴x=80,答:现在平均每天生产80个零件.【点评】本题考查分式方程的应用,解题的关键是读懂题意,

找到等量关系列方程.22.(6分)如图,为了修建跨江大桥,需要利用数学方法测量江的宽度AB.飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CD为1000m,且点D,A,B在同一水平直线上,

试求这条江的宽度AB(结果精确到1m,参考数据:第21页(共36页)≈1.4142,≈1.7321).【分析】根据题意可得∠CAD=45°,∠CBD=30°,然后分别在Rt△ACD和Rt△BCD中,利用锐角三角函数的定义求出BD,AD的长,进行

计算即可解答.【解答】解:由题意得:∠CAD=45°,∠CBD=30°,在Rt△ACD中,CD=1000m,∴AD==1000(m),在Rt△BCD中,BD===1000(m),∴AB=BD﹣AD=100﹣1000≈732(m),∴这条江的宽度AB约为732m.【点评】本题考查了解直

角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.23.(7分)中华文化源远流长,中华诗词寓意深广,为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩不低于50分.为了更好地了解本次海选比赛的成绩分布

情况.随机选取其中200名学生的海选比赛成绩(总分100分)作为样本进行整理,得到海选成绩统计表与扇形统计图如下:抽取的200名学生成绩统计表组别海选成绩人数A组50≤x<6010B组60≤x<7030C组70≤x<8040第22页(共36页)D组80≤x<90aE组90≤

x≤10070请根据所给信息解答下列问题:(1)填空:①a=50,②b=15,③θ=72度;(2)若把统计表每组中各个成绩用这组数据的中间值代替(例如:A组数据中间值为55分),请估计被选取的200名学生成绩的平均数;(3)规定

海选成绩不低于90分记为“优秀”,请估计该校参加这次海选比赛的2000名学生中成绩“优秀”的有多少人?【分析】(1)根据频数分布表和扇形统计图中的数据,可以计算出a、b、θ的值;(2)根据加权平均数的计算方法,可以计算出被选取的200名学生成绩的平均数;(3)根据频数分布

表中的数据,可以计算出该校参加这次海选比赛的2000名学生中成绩“优秀”的有多少人.【解答】解:(1)a=200﹣10﹣30﹣40﹣70=50,b%=×100%=15%,θ=360°×=72°,故答案为:50,15,72;(2)=82(分),即估计被

选取的200名学生成绩的平均数是82分;(3)2000×=700(人),即估计该校参加这次海选比赛的2000名学生中成绩“优秀”的有700人.【点评】本题考查频数分布表、扇形统计图、用样本估计总体,解答本题的关键是明确第23页(共36页)题意,利用数形结合的思想解答

.24.(7分)如图,在四边形ABDF中,点E,C为对角线BF上的两点,AB=DF,AC=DE,EB=CF.连接AE,CD.(1)求证:四边形ABDF是平行四边形;(2)若AE=AC,求证:AB=DB.【分析】(1)根据等式的性质可得BC=EF,从而利用SSS证明△ABC≌△DFE,然后

利用全等三角形的性质可得∠ABC=∠DFE,从而可得AB∥DF,即可解答;(2)连接AD交BF于点O,利用平行四边形的性质可得OB=OD,从而可得OE=OC,再利用等腰三角形的性质可得AO⊥EC,然后证明四边形ABDF是菱形,即可解答.【解答】证明:(1)∵

EB=CF,∴EB+EC=CF+EC,∴BC=EF,∵AB=DF,AC=DE,∴△ABC≌△DFE(SSS),∴∠ABC=∠DFE,∴AB∥DF,∴四边形ABDF是平行四边形;(2)连接AD交BF于点O,∵四边形ABDF是平行四边形,∴OB=OD,∵BE=CF,第24页(共36页)∴OB﹣BE=

OF﹣CF,∴OE=OC,∵AE=AC,∴AO⊥EC,∴四边形ABDF是菱形,∴AB=BD.【点评】本题考查了平行四边形的判定与性质,菱形的判定与性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质,以及菱形的判定与性质是解题的关键.25.(7分)已知反比例函数

y=和一次函数y=x﹣1,其中一次函数图象过(3a,b),(3a+1,b+)两点.(1)求反比例函数的关系式;(2)如图,函数y=x,y=3x的图象分别与函数y=(x>0)图象交于A,B两点,在y轴上是否存在点P,使得△ABP周长

最小?若存在,求出周长的最小值;若不存在,请说明理由.第25页(共36页)【分析】(1)把(3a,b),(3a+1,b+)代入y=x﹣1中,列出方程组进行计算即可解答;(2)作点B关于y轴的对称点B′,连接AB′交y轴于点P,

连接BP,此时AP+BP的最小,即△ABP周长最小,先求出A,B两点坐标,从而求出AB的长,再根据点B与点B′关于y轴对称,求出B′的坐标,从而求出AB′的长,进而求出△ABP周长的最小值.【解答】解:(1)把(3a,b),(3a+1,b+)代入y=x﹣1中可得:,解得:k=3

,∴反比例函数的关系式为:y=;(2)存在,作点B关于y轴的对称点B′,连接AB′交y轴于点P,连接BP,此时AP+BP的最小,即△ABP周长最小,由题意得:,解得:或,∴A(1,3),由题意的:,解得:或,∴B(3,1),∴AB=2,∵点B与点B′关

于y轴对称,∴B′(﹣1,3),BP=B′P,∴AB′=2,第26页(共36页)∴AP+BP=AP+B′P=AB′=2,∴AP+BP的最小值为2,∴△ABP周长最小值=2+2,∴△ABP周长的最小值为2+2.【点评】本题考查了待定系数法求反比例函数解析式,反比

例函数与一次函数的交点问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.26.(8分)某果园有果树60棵,现准备多种一些果树提高果园产量.如果多种树,那么树之间的距离和每棵果树所受光照就会减少,每

棵果树的平均产量随之降低.根据经验,增种10棵果树时,果园内的每棵果树平均产量为75kg.在确保每棵果树平均产量不低于40kg的前提下,设增种果树x(x>0且x为整数)棵,该果园每棵果树平均产量为ykg,它们之间的函数关系满足如图所示的图象.(1)图中点P所表示的实际意义是增种果树28棵,每棵

果树平均产量为66kg,每增种1棵果树时,每棵果树平均产量减少kg;(2)求y与x之间的函数关系式,并直接写出自变量x的取值范围;(3)当增种果树多少棵时,果园的总产量w(kg)最大?最大产量是多少?第27页(共36页)【分析】(1)根据题意可知点P所表示的实际

意义,列算式求出每增种1棵果树时,每棵果树平均产量减少多少kg;(2)先求出A点坐标,再求出y与x之间的函数关系式,再求出自变量x的取值范围;(3)根据题意写出二次函数解析式,根据其性质,求出当增种果树多少棵时,果园

的总产量w(kg)最大,及最大产量是多少.【解答】解:(1)根据题意可知:点P所表示的实际意义是增种果树28棵,每棵果树平均产量为66kg,(75﹣66)÷(28﹣10)=,∴每增种1棵果树时,每棵果树平均产量减少kg

,故答案为:增种果树28棵,每棵果树平均产量为66kg,kg;(2)设在10棵的基础上增种m棵,根据题意可得m=75﹣40,解得m=70,∴A(80,40),第28页(共36页)设y与x之间的函数关系式:

y=kx+b,把P(28,66),A(80,40),,解得k=﹣,b=80,∴y与x之间的函数关系式:y=﹣x+80;自变量x的取值范围:0≤x≤80;(3)设增种果树a棵,W=(60+a)(﹣0.5a+80)=﹣0.5a2+50a+4800,∵﹣0.5<0,∴a=﹣=50,W

最大=6050,∴当增种果树50棵时,果园的总产量w(kg)最大,最大产量是6050kg.【点评】本题考查了二次函数的应用,掌握用待定系数法求二次函数解析式,用二次函数的性质求出最大产量是解题关键.27.(9分)如图,已知BC是△ABC外接圆⊙O的直径

,BC=16.点D为⊙O外的一点,∠ACD=∠B.点E为AC中点,弦FG过点E,EF=2EG,连接OE.(1)求证:CD是⊙O的切线;(2)求证:(OC+OE)(OC﹣OE)=EG•EF;(3)当FG∥BC时,求弦FG的长.【分析】(1)由BC是△ABC外接圆⊙

O的直径,得∠ABC+∠ACB=90°,根据∠ACD=∠B,即得∠BCD=90°,从而CD是⊙O的切线;第29页(共36页)(2)连接AF,CG,证明△AEF∽△GEC,可得AE•CE=EG•EF,根据E为AC的中点,有AE=C

E,OE⊥AC,即可得OC2﹣OE2=EG•EF,(OC+OE)(OC﹣OE)=EG•EF;(3)过O作ON⊥FG于N,延长EG交CD于M,由四边形MNOC是矩形,得MN=OC=BC=8,根据EF=2EG,可得NG=EG,NE=EG,EM=MN﹣NE=8﹣EG,因C

E2=EG•EF=2EG2,可得2EG2﹣(8﹣EG)2=(82﹣2EG2)﹣(EG)2,解得EG即可得FG=3EG=3﹣3.【解答】(1)证明:∵BC是△ABC外接圆⊙O的直径,∴∠BAC=90°,∴∠ABC+∠ACB=90°,∵∠ACD=∠B,∴∠ACD+∠ACB=90°,

即∠BCD=90°,∴BC⊥CD,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)证明:连接AF,CG,如图:∵=,∴∠AFE=∠GCE,∵∠AEF=∠GEC,∴△AEF∽△GEC,∴=,第30页(共36页)∴AE•CE=EG•EF,∵E为AC的中点,∴AE=CE,OE⊥AC,∴

CE2=OC2﹣OE2,AE•CE=CE•CE=CE2=EG•EF,∴OC2﹣OE2=EG•EF,∴(OC+OE)(OC﹣OE)=EG•EF;(3)解:过O作ON⊥FG于N,延长EG交CD于M,如图:∵∠OCD=∠ONM=90°,FG∥B

C,∴四边形MNOC是矩形,∴MN=OC=BC=8,∵ON⊥FG,∴FN=GN,∵EF=2EG,∴FG=3EG,∴NG=EG,∴NE=EG,∴EM=MN﹣NE=8﹣EG,由(2)知CE2=EG•EF=2EG2,∴CM2=

CE2﹣EM2=2EG2﹣(8﹣EG)2=ON2,而ON2=OE2﹣NE2=(OC2﹣CE2)﹣NE2,第31页(共36页)∴2EG2﹣(8﹣EG)2=(82﹣2EG2)﹣(EG)2,解得EG=﹣1(负值已舍

去),∴FG=3EG=3﹣3.【点评】本题考查原的综合应用,涉及垂径定理及应用,三角形相似的判定与应用,勾股定理及应用等知识,解题的关键是作辅助线,构造相似三角形和直角三角形解决问题.28.(9分)已知二次函数y=x2+bx+m图象的对称轴为直线x=2,将二次函数y=x2+bx+m图象中

y轴左侧部分沿x轴翻折,保留其他部分得到新的图象C.(1)求b的值;(2)①当m<0时,图C与x轴交于点M,N(M在N的左侧),与y轴交于点P.当△MNP为直角三角形时,求m的值;②在①的条件下,当图象C中﹣4≤y<0时,结合图象求x的取值范围;(3)已知两点A(﹣1,﹣1),B(5,﹣1

),当线段AB与图象C恰有两个公共点时,直接写出m的取值范围.【分析】(1)由二次函数的对称轴直接可求b的值;(2)①求出M(2﹣,0),N(2+,0),再求出MN=2,MN的中点坐标为(2,0),利用直角三角形斜边的中线等于

斜边的一半,列出方程即可求解;②求出抛物线y=x2﹣4x﹣1(x≥0)与直线y=﹣4的交点为(1,﹣4),(3,﹣4),再求出y=x2﹣4x﹣1关于x轴对称的抛物线解析式为y=﹣x2+4x+1(x<0)当﹣x2+4x+1=﹣

4时,解得x=5(舍)或x=﹣1,抛物线y=﹣x2+4x+1(x<0)与直线y=﹣4的交点为(﹣1,﹣4),结合图像可得﹣1≤x<2﹣或2﹣<x≤1或3≤x<2+时,﹣4≤y<0;第32页(共36页)(3)通过画函数的图象,分类讨论

求解即可.【解答】解:(1)∵已知二次函数y=x2+bx+m图象的对称轴为直线x=2,∴b=﹣4;(2)如图1:①令x2+bx+m=0,解得x=2﹣或x=2+,∵M在N的左侧,∴M(2﹣,0),N(2+,0),∴MN=2,MN的中点坐标为(2,0),∵△MNP为直角三角形,∴=,解得m=0(

舍)或m=﹣1;②∵m=﹣1,∴y=x2﹣4x﹣1(x≥0),令x2﹣4x﹣1=﹣4,解得x=1或x=3,∴抛物线y=x2﹣4x﹣1(x≥0)与直线y=﹣4的交点为(1,﹣4),(3,﹣4),∵y=x2﹣4x﹣1关于x轴对称的抛物线解析式为y=﹣x2+4x+1(x<0),当﹣x2+4x+

1=﹣4时,解得x=5(舍)或x=﹣1,∴抛物线y=﹣x2+4x+1(x<0)与直线y=﹣4的交点为(﹣1,﹣4),∴﹣1≤x<2﹣或2﹣<x≤1或3≤x<2+时,﹣4≤y<0;(3)y=x2﹣4x+m关于x轴对称的抛物线解析式为y=﹣x2+4x﹣m(x<0),如

图2,当=﹣x2+4x﹣m(x<0)经过点A时,﹣1﹣4﹣m=﹣1,解得m=﹣4,∴y=x2﹣4x﹣4(x≥0),当x=5时,y=1,∴y=x2﹣4x﹣4(x≥0)与线段AB有一个交点,∴m=﹣4时,当线段AB与图象C恰有两个公共点;如

图3,当y=x2﹣4x+m(x≥0)经过点(0,﹣1)时,m=﹣1,此时图象C与线段AB有三个公共点,∴﹣4≤m<﹣1时,线段AB与图象C恰有两个公共点;第33页(共36页)如图4,当y=﹣x2+4x﹣m(x<0)经过点(0,﹣1)时,m=1,

此时图象C与线段AB有三个公共点,如图5,当y=x2﹣4x+m(x≥0)的顶点在线段AB上时,m﹣4=﹣1,解得m=3,此时图象C与线段AB有一个公共点,∴1<m<3时,线段AB与图象C恰有两个公共点;综上所述:﹣4≤m<﹣1或1<m<3时,线段

AB与图象C恰有两个公共点.,第34页(共36页)第35页(共36页)第36页(共36页)【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,图形翻折的性质,分类讨论,数形结合是解题的关键.声明:试题解析著作权属菁优网所有,未经书面同意

,不得复制发布日期:2022/7/17:45:47;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557

我爱分享
我爱分享
分享文档,知识给梦想插上翅膀
  • 文档 1229
  • 被下载 2
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?