【文档说明】2022年江苏省南通市中考数学试卷.doc,共(32)页,908.500 KB,由我爱分享上传
转载请保留链接:https://www.ichengzhen.cn/view-20797.html
以下为本文档部分文字说明:
第1页(共32页)2022年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)若气温零上2℃记作+2℃,则气温零下3℃记作()A.﹣3℃B.﹣1℃
C.+1℃D.+5℃2.(3分)下面由北京冬奥会比赛项目图标组成的四个图形中,可看作轴对称图形的是()A.B.C.D.3.(3分)沪渝蓉高铁是国家中长期铁路网规划“八纵八横”之沿江高铁通道的主通道,其中南通段总投资约39000000000元,将39000000000用科学记数法表示
为()A.3.9×1011B.0.39×1011C.3.9×1010D.39×1094.(3分)用一根小木棒与两根长分别为3cm,6cm的小木棒组成三角形,则这根小木棒的长度可以为()A.1cmB.2cmC.3cmD.4cm5.(3分)如图是由5个相同的正方体搭
成的立体图形,则它的主视图为()A.B.C.D.6.(3分)李师傅家的超市今年1月盈利3000元,3月盈利3630元.若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是()A.10.5%B.10%C.20%D.21%7.(3
分)如图,a∥b,∠3=80°,∠1﹣∠2=20°,则∠1的度数是()第2页(共32页)A.30°B.40°C.50°D.80°8.(3分)根据图象,可得关于x的不等式kx>﹣x+3的解集是()A.x<2B.x>2C.x<1D.x>19.(3分)如图,在▱ABCD中
,对角线AC,BD相交于点O,AC⊥BC,BC=4,∠ABC=60°.若EF过点O且与边AB,CD分别相交于点E,F,设BE=x,OE2=y,则y关于x的函数图象大致为()A.B.第3页(共32页)C.D.10.(3分)已知实数m,n满足m2+n2=2+mn,则(2
m﹣3n)2+(m+2n)(m﹣2n)的最大值为()A.24B.C.D.﹣4二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)为了了解“双减”背景下全国中
小学生完成课后作业的时间情况,比较适合的调查方式是(填“全面调查”或“抽样调查”).12.(3分)分式有意义,则x应满足的条件是.13.(4分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三.问人数、
羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱.问人数、羊价各是多少?若设人数为x,则可列方程为.14.(4分)如图,点B,F,C,E在一条直线上,AB∥ED,AC
∥FD,要使△ABC≌△DEF,只需添加一个条件,则这个条件可以是.15.(4分)根据物理学规律,如果不考虑空气阻力,以40m/s的速度将小球沿与地面成30°角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是h=﹣5
t2+20t,当飞行时间t为s时,小球达到最高点.16.(4分)如图,B为地面上一点,测得B到树底部C的距离为10m,在B处放置1m高的测角仪BD,测得树顶A的仰角为60°,则树高AC为m(结果保留根号).第4页(共3
2页)17.(4分)平面直角坐标系xOy中,已知点A(m,6n),B(3m,2n),C(﹣3m,﹣2n)是函数y=(k≠0)图象上的三点.若S△ABC=2,则k的值为.18.(4分)如图,点O是正方形ABCD的中心,AB=3.Rt△BEF中,∠BEF=90
°,EF过点D,BE,BF分别交AD,CD于点G,M,连接OE,OM,EM.若BG=DF,tan∠ABG=,则△OEM的周长为.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(12分)(
1)计算:;(2)解不等式组:.20.(10分)为了了解八年级学生本学期参加社会实践活动的天数情况,A,B两个县区分别随机抽查了200名八年级学生,根据调查结果绘制了统计图表,部分图表如下:A,B两个县区的统计表平均数众数中位数A县区3.8533B县区3.8542.5(1)若A县区八年级
共有约5000名学生,估计该县区八年级学生参加社会实践活动不少于3天的学生约为名;第5页(共32页)(2)请对A,B两个县区八年级学生参加社会实践活动的天数情况进行比较,作出判断,并说明理由.21.(10分)【阅读材料】老师的问
题:已知:如图,AE∥BF.求作:菱形ABCD,使点C,D分别在BF,AE上.小明的作法:(1)以A为圆心,AB长为半径画弧,交AE于点D;(2)以B为圆心,AB长为半径画弧,交BF于点C;(3)连接CD.四边形ABCD就是所求作的菱形.【解答问题】
请根据材料中的信息,证明四边形ABCD是菱形.22.(10分)不透明的袋子中装有红球、黄球、蓝球各一个,这些球除颜色外无其他差别.(1)从袋子中随机摸出一个球,摸到蓝球的概率是;(2)从袋子中随机摸出一个球后,放回并摇匀,再随机摸出一个
球.求两次摸到的球的第6页(共32页)颜色为“一红一黄”的概率.23.(10分)如图,四边形ABCD内接于⊙O,BD为⊙O的直径,AC平分∠BAD,CD=2,点E在BC的延长线上,连接DE.(1)求直径BD
的长;(2)若BE=5,计算图中阴影部分的面积.24.(12分)某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售
额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为akg时,它们的利润和为1500元,求a的值.25.(13分)如图,矩形ABCD中,
AB=4,AD=3,点E在折线BCD上运动,将AE绕点A顺时针旋转得到AF,旋转角等于∠BAC,连接CF.(1)当点E在BC上时,作FM⊥AC,垂足为M,求证:AM=AB;(2)当AE=3时,求CF的长;(3)连接DF,点E从点B运动到点D的过程中,试探究DF的最小值.第
7页(共32页)26.(13分)定义:函数图象上到两坐标轴的距离都不大于n(n≥0)的点叫做这个函数图象的“n阶方点”.例如,点(,)是函数y=x图象的“阶方点”;点(2,1)是函数y=图象的“2阶方点”.(
1)在①(﹣2,﹣);②(﹣1,﹣1);③(1,1)三点中,是反比例函数y=图象的“1阶方点”的有(填序号);(2)若y关于x的一次函数y=ax﹣3a+1图象的“2阶方点”有且只有一个,求a的值;(3)若y关于x的二次函数y=﹣(x﹣n)2﹣2n+1图象的“n阶方
点”一定存在,请直接写出n的取值范围.第8页(共32页)2022年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)若气温零上2℃记作+2
℃,则气温零下3℃记作()A.﹣3℃B.﹣1℃C.+1℃D.+5℃【分析】根据气温是零上2摄氏度记作+2℃,则可以表示出气温是零下3摄氏度,从而可以解答本题.【解答】解:∵气温是零上2摄氏度记作+2℃,∴气温是零下3摄氏度记作﹣3℃.
故选:A.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题中表示的含义.2.(3分)下面由北京冬奥会比赛项目图标组成的四个图形中,可看作轴对称图形的是()A.B.C.D.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分
析即可.【解答】解:选项A、B、C不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形.选项D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图
形.故选:D.【点评】此题主要考查了轴对称图形,掌握轴对称图形的定义是解答本题的关键.3.(3分)沪渝蓉高铁是国家中长期铁路网规划“八纵八横”之沿江高铁通道的主通道,其中南通段总投资约39000000000元,将390000000
00用科学记数法表示为()A.3.9×1011B.0.39×1011C.3.9×1010D.39×109第9页(共32页)【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:
39000000000=3.9×1010.故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.(3分)用一根小木棒与两根长分别为3cm,6cm的小木棒组成三角形,则这根小木棒的长度可以为()A
.1cmB.2cmC.3cmD.4cm【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求第三根木条的取值范围.【解答】解:设第三根木条长为xcm,由三角形三边关系定理得6﹣3<x
<6+3,即3<x<9,即x的取值范围是3<x<9,观察选项,只有选项D符合题意.故选:D.【点评】本题主要考查了三角形三边关系,实际上就是根据三角形三边关系定理列出不等式,然后解不等式,确定取值范围即可,
难度适中.5.(3分)如图是由5个相同的正方体搭成的立体图形,则它的主视图为()A.B.C.D.【分析】根据主视图的意义,从正面看该组合体所得到的图形进行判断即可.【解答】解:从正面看该组合体,所看到的图形与选项A中的图形相同,故选
:A.【点评】本题考查简单组合体的主视图,理解视图的意义,掌握三视图的画法是正确判断的前提.6.(3分)李师傅家的超市今年1月盈利3000元,3月盈利3630元.若从1月到3月,每第10页(共32页)月盈利的平均增长率都相同,则这个平均增长率是()A.10.5%B.10%C.20%D.21%【分析
】设该商店的月平均增长率为x,根据等量关系:1月份盈利额×(1+增长率)2=3月份的盈利额列出方程求解即可.【解答】解:设从1月到3月,每月盈利的平均增长率为x,由题意可得:3000(1+x)2=3630,解得:x1=0.1=10%,x2=﹣2.1(舍去),答:每月盈利的平均增长率为1
0%.故答案为:B.【点评】此题主要考查了一元二次方程的应用,属于增长率的问题,增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.
7.(3分)如图,a∥b,∠3=80°,∠1﹣∠2=20°,则∠1的度数是()A.30°B.40°C.50°D.80°【分析】根据平行线的性质可得∠1=∠4,然后根据三角形的外角可得∠3=∠4+∠2,从而可得∠1+∠2=80°,最后进行计算即可解答.【解答】解:如图:∵a∥b,∴∠1=∠
4,∵∠3是△ABC的一个外角,∴∠3=∠4+∠2,∵∠3=80°,∴∠1+∠2=80°,第11页(共32页)∵∠1﹣∠2=20°,∴2∠1+∠2﹣∠2=100°,∴∠1=50°,故选:C.【点评】本题
考查了平行线的性质,熟练掌握平行线的性质是解题的关键.8.(3分)根据图象,可得关于x的不等式kx>﹣x+3的解集是()A.x<2B.x>2C.x<1D.x>1【分析】先根据函数图象得出交点坐标,根据交点
的坐标和图象得出即可.【解答】解:根据图象可知:两函数的交点为(1,2),所以关于x的一元一次不等式kx>﹣x+3的解集为x>1,故选:D.【点评】本题考查了一次函数与一元一次不等式,能根据图象得出正确信息是解
此题的关键.9.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,AC⊥BC,BC=4,∠ABC=60°.若EF过点O且与边AB,CD分别相交于点E,F,设BE=x,OE2=y,则y关于x的函数图象大致为()
第12页(共32页)A.B.C.D.【分析】过O点作OM⊥AB于M,由含30°角的直角三角形的性质及勾股定理可求解AB,AC的长,结合平行四边形的性质可得AO的长,进而求得OM,AM的长,设BE=x,则EM=5﹣x,利用勾股定理可求得yy与x的关系式,根据自变量的取值范围可求得函数值
的取值范围,即可判断函数的图象求解.【解答】解:过O点作OM⊥AB于M,∵AC⊥BC,∠ABC=60°,∴∠BAC=30°,∵BC=4,∴AB=8,AC=,∵四边形ABCD为平行四边形,第13页(共32页)∴AO=AC=,∴OM=AO=,∴AM=,
设BE=x,OE2=y,则EM=AB﹣AM﹣EM=8﹣3﹣x=5﹣x,∵OE2=OM2+EM2,∴y=(x﹣5)2+3,∵0≤x≤8,∴3≤y≤12,故符合解析式的图象为:故选:C.【点评】本题主要考查
平行四边形的性质,勾股定理,含30°角的直角三角形的性质,二次函数的图象,求解函数解析式及函数值的范围是解题的关键.10.(3分)已知实数m,n满足m2+n2=2+mn,则(2m﹣3n)2+(m+2n)(m﹣2n)的
最大值为()A.24B.C.D.﹣4【分析】先判断出mn=m2+n2﹣2,进而化简(2m﹣3n)2+(m+2n)(m﹣2n)=24﹣7(m2+n2),再判断出m+n=0时m2+n2取到最小值,即可求出答案.【解答】解:∵m2
+n2=2+mn,∴mn=m2+n2﹣2,∴(2m﹣3n)2+(m+2n)(m﹣2n)=4m2+9n2﹣12mn+m2﹣4n2=5m2+5n2﹣12mn第14页(共32页)=5m2+5n2﹣12(m2+n2﹣2)=24﹣7(m2+n2),∵m2+n2=2+mn,∴
(m+n)2=2+3mn≥0(当m+n=0时,取等号),∴3mn+2=0,∴mn=﹣,(m2+n2)最小值=,∴24﹣7(m2+n2)取到最大值为,即(2m﹣3n)2+(m+2n)(m﹣2n)的最大值为,故选:B.
【点评】此题主要考查了完全平方公式,整式的乘法,化简(2m﹣3n)2+(m+2n)(m﹣2n)是解本题的关键.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11
.(3分)为了了解“双减”背景下全国中小学生完成课后作业的时间情况,比较适合的调查方式是抽样调查(填“全面调查”或“抽样调查”).【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:为了了解“双减”背景下全国中小学生完成课后
作业的时间情况,比较适合的调查方式是全面调查.故答案为:抽样调查.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或
价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12.(3分)分式有意义,则x应满足的条件是x≠2.【分析】利用分母不等于0,分式有意义,列出不等式求解即可.【解答】解:∵分母不等于0,分式有意义,第15页(共32
页)∴x﹣2≠0,解得:x≠2,故答案为:x≠2.【点评】本题主要考查了分式有意义的条件,利用分母不等于0,分式有意义,列出不等式是解题的关键.13.(4分)《九章算术》中记载:“今有共买羊,人出五,不足四
十五;人出七,余三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱.问人数、羊价各是多少?若设人数为x,则可列方程为5x+45=7x+3.【分析】根据购买羊的总钱数不变得出方程即可.【解答】解:若设人数为x
,则可列方程为:5x+45=7x+3.故答案为:5x+45=7x+3.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.14.(4分)如图,点B,F,C,E在一条直线上,AB∥ED,AC∥FD,要使△ABC≌△DEF,只需添加一个条件,则这
个条件可以是AB=DE(答案不唯一).【分析】根据平行线的性质可得∠B=∠E,∠ACB=∠DFE,然后再利用全等三角形的判定方法即可解答.【解答】解:∵AB∥ED,∴∠B=∠E,∵AC∥DF,∴∠ACB=∠DFE,∵AB=DE,∴△ABC
≌△DEF(AAS),故答案为:AB=DE(答案不唯一).第16页(共32页)【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.15.(4分)根据物理学规律,如果不考虑空气阻力,以40m/s的速度将小球
沿与地面成30°角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是h=﹣5t2+20t,当飞行时间t为2s时,小球达到最高点.【分析】把二次函数解析式化为顶点式,即可得出结论.【解答】解:h=﹣5t2+20t=﹣
5(t﹣2)2+20,∵﹣5<0,∴当t=2时,h有最大值,最大值为20,故答案为:2.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.16.(4分)如图,B为地面上一点,测得B到树底部C的距离为10m,在B处放置1m高的测角仪B
D,测得树顶A的仰角为60°,则树高AC为(1+10)m(结果保留根号).【分析】在Rt△AED中,求出AE=DE•tan60°,加上1即为AC的长.【解答】解:如图,设DE⊥AC于点E,在Rt△AED中,AE=DE•tan60°=10×=10,∴AC=1+10(米).第17页(共32页)故答案为
:1+10.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.17.(4分)平面直角坐标系xOy中,已知点A(m,6n),B(3m,2n),C(﹣3m,﹣2n)是函数y=(k≠0)图象上的三点.若S△ABC=2,
则k的值为±.【分析】连接OA,作AD⊥x轴于D,BE⊥x轴于E,由B、C点的坐标可知B、C关于原点对称,则BO=CO,即可求得S△AOB=1,根据反比例函数系数k的几何意义得出S△AOB=S梯形ADEB+S△AOD﹣S△BOE=S梯形ADEB,
即可得出(|6n+2n|)•(|3m﹣m|=1,求得mn=±,由于k=6mn,即可求得k=±.【解答】解:如图,连接OA,作AD⊥x轴于D,BE⊥x轴于E,∵点A(m,6n),B(3m,2n),C(﹣3m,﹣2n)是函数y=(
k≠0)图象上的三点.∴B、C关于原点对称,∴BO=CO,∵S△ABC=2,∴S△AOB=1,∵S△AOB=S梯形ADEB+S△AOD﹣S△BOE=S梯形ADEB,∴(|6n+2n|)•(|3m﹣m|=1,∴|mn|=,∴mn=±,
∵k=m•6n=6mn,∴k=±,故答案为:±.第18页(共32页)【点评】本题考查了反比例函数的性质,反比例函数系数k的几何意义,三角形的面积,求得△AOB的面积为1是解题的关键.18.(4分)如图,点O是正方形ABCD的中心,AB=3.Rt△B
EF中,∠BEF=90°,EF过点D,BE,BF分别交AD,CD于点G,M,连接OE,OM,EM.若BG=DF,tan∠ABG=,则△OEM的周长为3++.【分析】如图,连接BD,过点F作FH⊥CD于点H.解直角三角形求出A
G,BG,利用相似三角形的性质求出EG,DE,再证明FH=BC,推出BM=MF,求出MF,BD可得结论.【解答】解:如图,连接BD,过点F作FH⊥CD于点H.∵四边形ABCD是正方形,∴AB=AD=3
,∠A=∠ADC=90°,∵tan∠ABG==,∴AG=,DG=2,第19页(共32页)∴BG===2,∵∠BAG=∠DEG=90°,∠AGB=∠DGE,∴△BAG∽△DEG,∴==,∠ABG=∠EDG,∴==,∴DE=,EG=,∴BE=BG+EG=2+=,∵∠ADH=
∠FHD=90°,∴AD∥FH,∴∠EDG=∠DFH,∴∠ABG=∠DFH,∵BG=DF=2,∠A=∠FHD=90°,∴△BAG≌△FHD(AAS),∴AB=FH,∵AB=BC,∴FH=BC,∵∠C=∠FHM=90°,∴FH∥CB,
∴==1,∴FM=BM,∵EF=DE+DF=+2=,∴BF===,∵∠BEF=90°,BM=MF,∴EM=BF=,∵BO=OD,BM=MF,∴OM=DF=,第20页(共32页)∵OE=BD=×6=3,∴△
OEM的周长=3++,故答案为:3++,【点评】本题考查正方形的性质,解直角三角形,全等三角形的判定和性质,相似三角形的判定和性质,三角形中位线定理,直角三角形斜边中线的性质等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考填空题中的压轴题.三、解答
题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(12分)(1)计算:;(2)解不等式组:.【分析】(1)利用分式的混合运算法则运算即可;(2)分别求得不等式组中两
个不等式的解集,取它们的公共部分即可得出结论.【解答】解:(1)原式====1;(2)不等式2x﹣1>x+1的解集为:x>2,不等式4x﹣1≥x+8的解集为:x≥3,它们的解集在数轴上表示为:∴不等式组的解集为:x≥3.【点评】本题主要考查了分式的混合运算,解一元一次不等式组,正
确利用上述法则进行运算是解题的关键.20.(10分)为了了解八年级学生本学期参加社会实践活动的天数情况,A,B两个县区分别随机抽查了200名八年级学生,根据调查结果绘制了统计图表,部分图表如下:A,B两个县区的统计表第21页(共32页)平均数众数中位数A县区3.
8533B县区3.8542.5(1)若A县区八年级共有约5000名学生,估计该县区八年级学生参加社会实践活动不少于3天的学生约为3750名;(2)请对A,B两个县区八年级学生参加社会实践活动的天数情况进行比较,作出判断,并说明理由.【分析】(1)A县区八年级学生的总人数乘以不少于3天的
学生的百分数;(2)通过对A,B两个县区八年级学生参加社会实践活动的天数的平均数、众数、中位数情况进行比较,作出判断.【解答】解:(1)5000×(30%+25%+15%+5%)=3750(名).故答案为:3750.(2)因为A,B两个县区的平均数一样,从众数来看B县区好,但从
中位数来看A县区好.【点评】此题主要考查了用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(10分)【阅读材料】老师的问题:已知:如图,AE∥BF.求作:菱形ABCD,使点C,D分别
在BF,AE上.小明的作法:(1)以A为圆心,AB长为半径画弧,交AE于点D;(2)以B为圆心,AB长为半径画弧,交BF于点C;第22页(共32页)(3)连接CD.四边形ABCD就是所求作的菱形.【解答问题】请根据材料中的信息,证明四边形ABCD是菱形.【分析】根据邻边相等的平行四边形是菱形证明即
可.【解答】证明:由作图可知AD=AB=BC,∵AE∥BF,∴四边形ABCD是平行四边形,∵AB=AD,∴四边形ABCD是菱形.【点评】本题考查作图﹣复杂作图,菱形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10
分)不透明的袋子中装有红球、黄球、蓝球各一个,这些球除颜色外无其他差别.(1)从袋子中随机摸出一个球,摸到蓝球的概率是;(2)从袋子中随机摸出一个球后,放回并摇匀,再随机摸出一个球.求两次摸到的球的颜色为“一红一黄”的概率.【分析】(1)直接由概率公式求解即可;(
2)画树状图,共有9种等可能的结果,其中两次摸到的球的颜色为“一红一黄”的结果有2种,再由概率公式求解即可.【解答】解:(1)从袋子中随机摸出一个球,摸到蓝球的概率是,故答案为:;第23页(共32页)(2)画树状图如下:共有9种等可能的结果,其中两次摸到
的球的颜色为“一红一黄”的结果有2种,∴两次摸到的球的颜色为“一红一黄”的概率为.【点评】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;用到的知识点
为:概率=所求情况数与总情况数之比.23.(10分)如图,四边形ABCD内接于⊙O,BD为⊙O的直径,AC平分∠BAD,CD=2,点E在BC的延长线上,连接DE.(1)求直径BD的长;(2)若BE=5,计算图中阴影部分的面积.【分析】(1)由BD为⊙O的直径,得到∠BCD=90°,AC
平分∠BAD,得到∠BAC=∠DAC,所以BC=DC,△BDC是等腰直角三角形,即可求出BD的长;(2)因为BC=DC,所以阴影的面积等于三角形CDE的面积..【解答】解:(1)∵BD为⊙O的直径,∴∠BCD=
∠DCE=90°,∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=DC=2,∴BD=2×=4;(2)∵BE=5,∴CE=3,第24页(共32页)∵BC=DC,∴S阴影=S△CDE=×2×=6.【点评】本题考查了圆的性质,等腰直角三角形的判定和性质,三角
形的面积的计算,熟练掌握圆周角定理是解题的关键.24.(12分)某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实
际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为akg时,它们的利润和为1500元,求a的值.【分析】(1)根据图形即可得出结论;(2
)用待定那个系数法分别求出甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式即可;(3)分0≤a≤30和30<a≤120两种情况列方程求解即可.【解答】解:(1)图中点B表示的实际意义为当销量为60kb时,甲、乙两种苹果的销售额均为1200元;(2)设甲种苹果销售额y(单位
:元)与销售量x(单位:kg)之间的函数解析式为y甲=kx(k≠0),把(60,1200)代入解析式得:1200=60k,解得k=20,第25页(共32页)∴甲种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式为y甲=20x(0≤x≤1
20);当0≤x≤30时,设乙种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式为y乙=k′x(k′≠0),把(30,750)代入解析式得:750=30k′,解得:k′=25,∴y乙=25x
;当30≤x≤120时,设乙种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式为y乙=mx+n(m≠0),则,解得:,∴y乙=15x+300,综上,乙种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式为y乙=;(3)①当0≤a≤
30时,根据题意得:(20﹣8)a+(25﹣12)a=1500,解得:a=60>30,不合题意;②当30<a≤120时,根据题意得:(20﹣8)a+(15﹣12)a=1500,解得:a=100,综上,a的值为100.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条
件,利用一次函数的性质和数形结合的思想解答.25.(13分)如图,矩形ABCD中,AB=4,AD=3,点E在折线BCD上运动,将AE绕点A顺时针旋转得到AF,旋转角等于∠BAC,连接CF.(1)当点E在BC上
时,作FM⊥AC,垂足为M,求证:AM=AB;(2)当AE=3时,求CF的长;(3)连接DF,点E从点B运动到点D的过程中,试探究DF的最小值.第26页(共32页)【分析】(1)如图1中,作FM⊥AC,垂足为M,证明△ABE≌
△AMF(AAS),可得结论;(2)利用勾股定理求出BE=,利用全等三角形的性质推出FM=BE=,再利用勾股定理求出CF即可;(3)分两种情形:当点E在BC上时,如图2中,过点D作DH⊥FM于点H.证明点F在射线FM上运动,当点F与H重合时,DH的值最小,求出DH即可.当点E在线段C
D上时,如图3中,将线段AD绕点A顺时针旋转,旋转角为∠ABC,得到线段AR,连接FR,过点D作DQ⊥AR于点Q,DK⊥FR于点K.证明△ADE≌△ARF(SAS),推出∠ADE=∠ARF=90°,推出点F在直线RF上运动,当点D与K重合时,DF的值最小,可得结论.【解答】(1)
证明:如图1中,作FM⊥AC,垂足为M,∵四边形ABCD是矩形,∴∠B=90°,∵FM⊥AC,∴∠B=∠AMF=90°,∵∠BAC=∠EAF,第27页(共32页)∴∠BAE=∠MAF,在△ABE和△AMF中,,∴△ABE≌△AMF(AAS),∴AB=AM;(2)解:在Rt△ABE中,AB=4
,AE=3,∴BE===,∵△ABE≌△AMF,∴AB=AM=4,FM=BE=,在Rt△ABC中,AB=4,BC=3,∴AC===5,∴CM=AC﹣AM=5﹣4=1,∵∠CMF=90°,∴CF===;(3)解:当点E在BC上时,如图2中,过点D作DH⊥FM于点H.∵△ABE≌△AMF,∴AM=
AB=4,∵∠AMF=90°,第28页(共32页)∴点F在射线FM上运动,当点F与H重合时,DH的值最小,∵∠CMJ=∠ADC=90°,∠MCJ=∠ACD,∴△CMJ∽△CDA,∴==,∴==,∴MJ=,CJ=,∴DJ=CD﹣CJ=4﹣=,∵∠CMJ=∠DHJ=
90°,∠CJM=∠DJH,∴△CMJ∽△DHJ,∴=,∴=,∴DH=,∴DF的最小值为.当点E在线段CD上时,如图3中,将线段AD绕点A顺时针旋转,旋转角为∠ABC,得到线段AR,连接FR,过点D作DQ⊥AR于点Q,DK⊥FR于点K.∵∠
EAF=∠BAC,∠DAR=∠BAC,∴∠DAE=∠RAF,∵AE=AF,AD=AR,∴△ADE≌△ARF(SAS),∴∠ADE=∠ARF=90°,第29页(共32页)∴点F在直线RF上运动,当点D与K重合时,DF的值
最小,∵DQ⊥AR,DK⊥RF,∴∠R=∠DQR=∠DKR=90°,∴四边形DKRQ是矩形,∴DK=QR,∴AQ=AD•cos∠BAC=3×=,∵AR=AD=3,∴DK=QR=AR﹣AQ=,∴DF的最
小值为,∵<,∴DF的最小值为.【点评】本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.26.(13分)定义:函数图象上到两坐标轴的距离都不大于n(
n≥0)的点叫做这个函数图象的“n阶方点”.例如,点(,)是函数y=x图象的“阶方点”;点(2,1)是函数y=图象的“2阶方点”.(1)在①(﹣2,﹣);②(﹣1,﹣1);③(1,1)三点中,是反比例函数y
=图象的“1阶方点”的有②③(填序号);(2)若y关于x的一次函数y=ax﹣3a+1图象的“2阶方点”有且只有一个,求a的值;(3)若y关于x的二次函数y=﹣(x﹣n)2﹣2n+1图象的“n阶方点”一定存在,请直接写出
n的取值范围.【分析】(1)根据定义进行判断即可;(2)在以O为中心,边长为4的正方形ABCD中,当直线与正方形区域只有唯一交点时,图象的“2阶方点”有且只有一个,结合图象求a的值即可;(3)在以O为中心,边长为2|n|的正
方形ABCD中,当抛物线与正方形区域有公共部分时,二次函数y=﹣(x﹣n)2﹣2n+1图象的“n阶方点”一定存在,分n>0和n<0两第30页(共32页)种情况,结合函数图象求解即可.【解答】解:(1)①(﹣2,﹣)到两坐标轴的距离分别是2>1,<1,∴(﹣2,﹣)不是反比例函数y=图象的“1阶
方点”;②(﹣1,﹣1)到两坐标轴的距离分别是1≤1,1≤1,∴(﹣1,﹣1)是反比例函数y=图象的“1阶方点”;③(1,1)到两坐标轴的距离分别是1≤1,1≤1,∴(1,1)是反比例函数y=图象的“1阶方点”;故答案为:
②③;(2)∵y=ax﹣3a+1=a(x﹣3)+1,∴函数经过定点(3,1),在以O为中心,边长为4的正方形ABCD中,当直线与正方形区域只有唯一交点时,图象的“2阶方点”有且只有一个,由图可知,C(2,﹣2),D(2,2),∵一次函数y=a
x﹣3a+1图象的“2阶方点”有且只有一个,当直线经过点C时,a=﹣1,此时图象的“2阶方点”有且只有一个,当直线经过点D时,a=3,此时图象的“2阶方点”有且只有一个,综上所述:a的值为3或﹣1;(3)
在以O为中心,边长为2|n|的正方形ABCD中,当抛物线与正方形区域有公共部分时,二次函数y=﹣(x﹣n)2﹣2n+1图象的“n阶方点”一定存在,如图2,当n<0时,抛物线的对称轴为直线x=n,如图可知,A(n,
﹣n),B(n,n),C(﹣n,n),D(﹣n,﹣n),当抛物线经过D点时,n=(舍)或n=(舍);如图3,当n<0时,A(n,n),B(n,﹣n),C(﹣n,﹣n),D(﹣n,n),当抛物线经过点D时,n=﹣1(舍)或n=;当抛物线经过点B时,n=1;∴
≤n≤1时,二次函数y=﹣(x﹣n)2﹣2n+1图象有“n阶方点”;综上所述:≤n≤1时,二次函数y=﹣(x﹣n)2﹣2n+1图象的“n阶方点”一定存在.第31页(共32页)【点评】本题考查二次函数的图象及
性质,熟练掌握二次函数的图象及性质,理解定义,将所求问题转化为正方形与函数图象的交点问题是解题的关键.第32页(共32页)声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2022/8/67:5
7:15;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557