2022年中考数学一轮复习习题精选《矩形、菱形与正方形》(含答案)

DOC
  • 阅读 23 次
  • 下载 0 次
  • 页数 17 页
  • 大小 739.500 KB
  • 2022-11-23 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
2022年中考数学一轮复习习题精选《矩形、菱形与正方形》(含答案)
可在后台配置第一页与第二页中间广告代码
2022年中考数学一轮复习习题精选《矩形、菱形与正方形》(含答案)
可在后台配置第二页与第三页中间广告代码
2022年中考数学一轮复习习题精选《矩形、菱形与正方形》(含答案)
可在后台配置第三页与第四页中间广告代码
2022年中考数学一轮复习习题精选《矩形、菱形与正方形》(含答案)
2022年中考数学一轮复习习题精选《矩形、菱形与正方形》(含答案)
还剩5页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 17
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】2022年中考数学一轮复习习题精选《矩形、菱形与正方形》(含答案).doc,共(17)页,739.500 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-41802.html

以下为本文档部分文字说明:

一、选择题1.(市海淀区八年级期末)某小区有一块边长为a的正方形场地,规划修建两条宽为b的绿化带.方案一如图甲所示,绿化带面积为S甲;方案二如图乙所示,绿化带面积为S乙.设0kSabS甲乙,下列选项

中正确的是bbbbaaaabbbbbbbbaaaabbbb甲乙A.012kB.112kC.312kD.232k答案:B二、填空题2.(市师达中学八年级第一学期第二次月考)3.(西城区二模)如图,在矩形

ABCD中,顺次连接矩形四边的中点得到四边形EFGH.若AB=8,AD=6,则四边形EFGH的周长等于.答案:204.(西城区二模)我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,(3,0)A,(4,0)B,边AD长为5.现固定边AB,“

推”矩形使点D落在y轴的正半轴上(落点记为D),相应地,点C的对应点C的坐标为.5、(平谷区第一学期期末)12.已知菱形ABCD中,∠B=60°,AB=2,则菱形ABCD的面积是.答案:23三、解答题6.(

石景山区初三毕业考试)问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O是菱形ABCD的对角线交点,5AB,下面是小红将菱形ABCD面积五等分的操作与证明思路,请补充完整.(1)在AB边上取点E,使4AE,连接OA,OE;(

2)在BC边上取点F,使BF,连接OF;(3)在CD边上取点G,使CG,连接OG;(4)在DA边上取点H,使DH,连接OH.由于AE+++.可证S△AOE==EOFBFOGCGOHDSSS四边形四边形四边形S△HOA.解:3,2,1;„„„„„„2分

EB、BF;FC、CG;GD、DH;HA.„„„„„„4分7、(市师达中学八年级第一学期第二次月考)8.(西城区二模)如图,在Rt△ABC中,90ACB,CD⊥AB于点D,BE⊥AB于点B,BE=CD,连接CE,DE.(1)

求证:四边形CDBE为矩形;(2)若AC=2,1tan2ACD,求DE的长.OHGFEDCBA图1(1)证明:如图2.∵CD⊥AB于点D,BE⊥AB于点B,∴90CDADBE.∴CD∥BE.„„„„„„„„„„„„„1分又∵

BE=CD,∴四边形CDBE为平行四边形.„„„„„2分又∵90DBE,∴四边形CDBE为矩形.„„„„„„„„„„„„„„„„„„3分(2)解:∵四边形CDBE为矩形,∴DE=BC.„„„„„„„„„„„„„„„„„„„„„„„„„4分∵在Rt△ABC中

,,CD⊥AB,可得.∵,∴.∵在Rt△ABC中,,AC=2,,∴.∴DE=BC=4.„„„„„„„„„„„„„„„„„„„„„„„5分9.(石景山区初三毕业考试)如图,在四边形ABCD中,90ABCD°,210BCCD,CEAD于点E.(1)求

证:AECE;(2)若tan3D,求AB的长.(1)证明:(法一)过点B作BH⊥CE于H,如图1.∵CE⊥AD,∴∠BHC=∠CED=90°,190D.∵∠BCD=90°,∴1290,∴2

D.又BC=CD∴BHC△≌CED△.∴BHCE.∵BH⊥CE,CE⊥AD,∠A=90°,BACED12BACHDE图2∴四边形ABHE是矩形,∴AEBH.∴AECE.„„„„„„3分(法二)过点C作CH⊥AB交AB的延长线于H.图略,证明略.(2)解:∵四边形ABHE是矩

形,∴ABHE.∵在RtCED△中,tan3CEDDE,设,3DExCEx,∴10210CDx.∴2x.∴2DE,6CE.„„„„„„4分∵2CHDE.∴624ABHE.10.(燕山地区一模)如图

,在△ABC中,D,E分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若∠BCF=120°,CE=4,求菱形BCFE的面积.(1)证明:∵点D,E,是AB,AC中点∴DE∥BC,DE=

12BC……………………….1′又BE=2DE,即DE=12BE∴BC=BE又EF=BE∴EF∥BC,EF=BC∴四边形BCFE是平行四边形……………………….2′又EF=BE∴四边形BCFE是菱形……………………….3′(2)∵四边形BCFE是菱形∴BC=BE又∠BCF=120°∴∠BCE=

60°∴△BCE是等边三角形∴连结BF交EC于点O.∴BF⊥EC在Rt△BOC中,BO=32242222OCBC……………………….4′ABCDEF322322121OCBOSBOC∴∴……………………….5′11.(延庆区初

三统一练习)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.解:(1)在Rt

△ABC中,∵CE//DC,BE//DC∴四边形DBEC是平行四边形∵D是AC的中点,∠ABC=90°∴BD=DC……1分∴四边形DBEC是菱形……2分(2)∵F是AB的中点∴BC=2DF=2,∠AFD=∠ABC=90°在Rt△AFD中,……3分∴……4分……5分12.(

西城区九年级统一测试)如图,在ABD△中,ABDADB,分别以点B,D为圆心,AB长为半径在BD的右侧作弧,两弧交于点C,分别连接BC,DC,AC,记AC与BD的交点为O.(1)补全图形,求AOB的度数并说明理由;(2)若5AB,3cos5ABD

,求BD的长.FEDCBA38324BCFES菱形BDA解:(1)补全的图形如图2所示.„„„„„„„„„„„„„„„„„„„„„„„1分∠AOB=90.证明:由题意可知BC=AB,DC=AB.∵在△ABD中,=ABD

ADB,∴AB=AD.∴BC=DC=AD=AB.∴四边形ABCD为菱形.„„„„„„„„2分∴AC⊥BD.∴∠AOB=90.„„„„„„„„„„„3分(2)解:∵四边形ABCD为菱形,∴OB=OD.„„„„„„„„„„„„„„„„„„„„„„„„„„4分在Rt

△ABO中,90AOB,AB=5,3cos5ABD,∴cos3OBABABD.∴2=6BDOB.„„„„„„„„„„„„„„„„„„„„„„„5分13.(门头沟区初三综合练习)在矩形ABCD中,连接AC,AC的垂直平分线交AC于点O,分别交AD、B

C于点E、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的周长.(1)证明:∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°,„„„„„„„„1分∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO

,在△AEO和△CFO中,∵∠EAO=∠FCO,AO=CO,∠AOE=∠COF,∴△AEO≌△CFO(ASA),FEOABCDFEOABCD图2∴OE=OF.„„„„„2分又∵OA=OC,∴四边形AECF是平行四边形,又∵EF⊥AC,∴平行四边形AECF是菱

形;„„„„„3分(2)设AF=x,∵EF是AC的垂直平分线,∴AF=CF=x,BF=8﹣x,„„„„„„„„„„„„„„„4分在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,42+(8﹣x)2=x2,解得x=5,∴AF=5,∴菱形AECF的周长为20.„„„„„„„5分14

.(通州区一模)答案:15.(平谷区中考统一练习)如图,在□ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)连接CF,若∠ABC

=60°,AB=4,AF=2DF,求CF的长.(1)证明:∵BF平分∠ABC,∴∠ABF=∠CBF.····································································1∵□ABCD,∴AD∥BC.∴∠AFB=∠CBF.∴∠

ABF=∠AFB.∴AB=AF.∵AE⊥BF,∴∠ABF+∠BAO=∠CBF+∠BEO=90°.∴∠BAO=∠BEO.∴AB=BE.∴AF=BE.∴四边形ABEF是平行四边形.∴□ABEF是菱形.··················

················································2(2)解:∵AD=BC,AF=BE,∴DF=CE.∴BE=2CE.∵AB=4,∴BE=4.∴CE=2.过点A作AG

⊥BC于点G.························································3∵∠ABC=60°,AB=BE,∴△ABE是等边三角形.∴BG=GE=2.∴AF=CG=4.····························

·············································4∴四边形AGCF是平行四边形.∴□AGCF是矩形.∴AG=CF.在△ABG中,∠ABC=60°,AB=4,O

ECBDAFGOECBDAF∴AG=23.∴CF=23.··········································································516.(顺义区初三练

习)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.(1)证明:∵BD=BC,点E是CD的中点,∴∠1=∠2.„„„„„„„„„„„„„„„„

„„„„1分∵AD∥BC,∴∠2=∠3.∴∠1=∠3.„„„„„„„„„„„2分∴BD=DF.∵BD=BC,∴DF=BC.又∵DF∥BC,∴四边形BCFD是平行四边形.∵BD=BC,∴□BCFD是菱形.

„„„„„„„„„„„„„„„„„„„„3分(2)解:∵∠A=90,AD=1,BD=BC=2,∴223ABBDAD.∵四边形BCFD是菱形,∴DF=BC=2.„„„„„„„„„„„„„„„„„„„„„„4分∴AF=AD+DF=3.∴22

3923BFABAF.„„„„„„„„„„„„5分217.(顺义区初三练习)如图,矩形ABCD中,点E是CD延长线上一点,FEABCD321FEABCDDBECAF第21题图且DE=DC,求证:∠E=∠BAC.EABCD证明:∵四边形ABCD是矩

形,∴∠ADC=90,AB∥CD.„„„„„„„„„„„„„„„„„„„1分∵DE=DC,∴AE=AC.„„„„„„„„„„„„„„„„„„„„„„„„„2分∴∠E=∠ACE.„„„„„„„„„„„„„„„„„„„„„„„„3分∵AB∥CD,∴∠BAC=∠A

CE.„„„„„„„„„„„„„„„„„„„„„„„4分∴∠E=∠BAC.„„„„„„„„„„„„„„„„„„„„„„„5分18.(海淀区第二学期练习)如图,□ABCD的对角线,ACBD相交于点O,且AE∥BD,BE∥AC,OE=CD.(1)

求证:四边形ABCD是菱形;(2)若AD=2,则当四边形ABCD的形状是_______________时,四边形AOBE的面积取得最大值是_________________.(1)证明:∵AEBD∥,BEAC∥,∴四边形AEBO是平行四边形.„

„„„„„1分∵四边形ABCD是平行四边形,∴DCAB.∵OECD,∴OEAB.∴平行四边形AEBO是矩形.„„2分∴90BOA.∴ACBD.∴平行四边形ABCD是菱形.„„3分(2)正方形;„„4分2.„5分19.(怀柔区一模)直角三角形ABC中,∠B

AC=90°,D是斜边BC上一点,且AB=AD,过点C作CE⊥AD,交AD的延长线于点E,交AB延长线于点F.CBEOADyx–1–2–3–4–512345–1–2–3–4–512345O(1)求证:∠ACB=∠DCE;(2)

若∠BAD=45°,2+2AF,过点B作BG⊥FC于点G,连接DG.依题意补全图形,并求四边形ABGD的面积.解:(1)∵AB=AD,∴∠ABD=∠ADB,………………………………1分∵∠ADB=∠CDE,∴∠ABD=∠CDE.∵∠BAC=90°,∴∠ABD+∠ACB=

90°.∵CE⊥AE,∴∠DCE+∠CDE=90°.∴∠ACB=∠DCE.…………………………………2分(2)补全图形,如图所示:…………………………3分∵∠BAD=45°,∠BAC=90°,∴∠BAE=∠CAE=45°,∠F=∠ACF=45°,∵AE⊥CF,BG⊥CF,∴AD∥BG.∵

BG⊥CF,∠BAC=90°,且∠ACB=∠DCE,∴AB=BG.∵AB=AD,∴BG=AD.∴四边形ABGD是平行四边形.∵AB=AD∴平行四边形ABGD是菱形.…………………………………………………………………4分设AB=BG=GD=AD=x,∴BF=2BG=2x.∴AB+BF=x+

2x=2+2.∴x=2,过点B作BH⊥AD于H.∴BH=22AB=1.∴S四边形ABDG=AD×BH=2.……………………………………………………………………5分20.(市朝阳区一模)如图,在菱形ABCD中,AC和BD相交于点O,过点O的线段EF与一组对边AB,CD分别

相交于点E,F.(1)求证:AE=CF;(2)若AB=2,点E是AB中点,求EF的长.DHGBECAFDGBECAF解(1)证明:∵四边形ABCD是菱形,∴AO=CO,AB∥CD.„„„„„„„„„„„„„„„„„„„1分∴∠EAO=∠FCO,∠AEO=∠CFO.∴△AOE≌

△COF.„„„„„„„„„„„„„„„„„„„2分∴AE=CF.„„„„„„„„„„„„„„„„„„„„„„„„3分(2)解:∵E是AB中点,∴BE=AE=CF.∵BE∥CF,∴四边形BEFC是平行四边形.„„„„„„„„„„„„„„„4分∵AB=2,∴EF=BC=AB=2.„„

„„„„„„„„„„„„„„„„„„5分21.(市大兴区检测)如图,矩形ABCD的对角线AC、BD交于点O,且DE=OC,CE=OD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.(1)证明:∵DE=OC,CE=OD,∴四边形OCED是平行四边形……

…………………………1分∵矩形ABCD,∴AC=BD,OC=12AC,OD=12BD.∴OC=OD.∴平行四边形OCED是菱形………………………………2分(2)解:在矩形ABCD中,∠ABC=90°,∠BAC=30°,AC=4,∴BC=2.∴AB=DC=23.…………

………………………………………3分连接OE,交CD于点F.∵四边形OCED为菱形,∴F为CD中点.∵O为BD中点,∴OF=12BC=1.∴OE=2OF=2…………………………………………………4分∴S菱形O

CED=12OE·CD=12×2×23=23…………………………………………………5分22.(丰台区一模)已知:如图,菱形ABCD,分别延长AB,CB到点F,E,使得BF=BA,BE=BC,连接AE,EF,FC,CA.

(1)求证:四边形AEFC为矩形;(2)连接DE交AB于点O,如果DE⊥AB,AB=4,求DE的长.(1)证明:∵BF=BA,BE=BC,∴四边形AEFC为平行四边形.………………………1分∵四边形ABCD为菱

形,∴BA=BC.∴BE=BF.∴BA+BF=BC+BE,即AF=EC.∴四边形AEFC为矩形.………………………2分(2)解:连接DB.由(1)知,AD∥EB,且AD=EB.∴四边形AEBD为平行四边形∵DE⊥AB,∴四边形AEBD为菱形.∴AEEB

,AB2AG,ED2EG.………………………4分∵矩形ABCD中,EBAB,AB=4,∴AG2,AE4.∴Rt△AEG中,EG=23.∴ED=43.………………………5分(其他证法相应给分)23.(昌平区二模)

如图,已知△ACB中,∠ACB=90°,CE是△ACB的中线,分别过点A、点C作CE和AB的平行线,交于点D.(1)求证:四边形ADCE是菱形;(2)若CE=4,且∠DAE=60°,求△ACB的面积.ABCEDFEFDCBAG答案.(1)证明:∵AD//CE,CD//AE∴四边形AECD为平

行四边形„„„„„„„„„1分∵∠ACB=90°,CE是△ACB的中线∴CE=AE„„„„„„„„„„„„„2分∴四边形ADCE是菱形(2)解:∵CE=4,AE=CE=EB∴AB=8,AE=4∵四边形ADCE是菱形,∠DAE=60°∴∠CAE=

30°„„„„„„„„„„„„„3分∵在Rt△ABC中,∠ACB=90°,∠CAB=30°,AB=83cos2ACCABAB,142CBAB∴AC=43„„„„„„„„„„„„„4分∴1832ABCSACBC„„„„„„„„„„„„„„„„„„„5分24.(东城区二模)如

图,在菱形ABCD中,BAD,点E在对角线BD上.将线段CE绕点C顺时针旋转,得到CF,连接DF.(1)求证:BE=DF;(2)连接AC,若EB=EC,求证:ACCF.答案21.(1)证明:∵四边形ABCD是菱形,∴=BCDC,BADBCD∠∠.∵ECF∠,∴BCDEC

F∠.∴=BCEDCF.∵线段CF由线段CE绕点C顺时针旋转得到,∴=CECF.在BEC△和DFC△中,BCDCBCEDCFCECF,,,DECBA∴BEC△≌SASDFC△.∴=.BEDF---

-------------------------------------------------------------------2分(2)解:∵四边形ABCD是菱形,∴ACBACD∠,ACBD.∴+90ACBEBC∠.∵=E

BEC,∴=EBCBCE.由(1)可知,∵=EBCDCF,∴+90DCFACDEBCACB∠.∴90ACF∠.∴ACCF.---------------------------------------------------------------

------5分25、(房山区二模)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的

长.解:(1)∵AD=CD,EA=EC,DE=DE∴△ADE≌△CDE∴∠ADE=∠CDE∵AD∥BC∴∠ADB=∠DBC∴∠DBC=∠BDC∴BC=CD∴AD=BC又∵AD∥BC∴四边形ABCD是平行四边形„„„„„

„„„„„„„„„„„„„„2′∵AD=CD∴四边形ABCD是菱形„„„„„„„„„„„„„„„„„„„„„„3′(2)作EF⊥CD于F∵∠BDC=30°,DE=2∴EF=1,DF=3„„„„„„„„„„„„„„„„„„„„„„„„„„4′∵CE=3ADCBE∴CF=22∴CD=22+3„

„„„„„„„„„„„„„„„„„„„„„„„„5′26.(丰台区二模)如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面积.答案

.(1)证明:∵DE∥BC,DF∥AB,∴四边形BEDF为平行四边形………………1分∴∠1=∠3.∵BD是△ABC的角平分线,∴∠1=∠2.∴∠2=∠3.∴BF=DF.∴四边形BEDF为菱形.………………………

2分(2)解:过点D作DG⊥BC于点G,则∠BGD=90°.∵∠A=90°,∠C=30°,∴∠ABC=60°.由(1)知,BF=DF,∠2=30°,DF∥AB,∴∠DFG=∠ABC=60°.∵BD=12,∴在Rt△BDG中,DG=6.∴在Rt△FDG中,DF

=43.………………………4分∴BF=DF=43.∴S菱形BEDF243BFDG.………………………5分(其他证法相应给分)27.(海淀区二模)如图,在四边形ABCD中,ABCD,BD交AC于G,E是BD的中点,连接AE并延长,交CD

于点F,F恰好是CD的中点.(1)求BGGD的值;(2)若CEEB,求证:四边形ABCF是矩形.答案.(1)解:∵AB∥CD,∴∠ABE=∠EDC.∵∠BEA=∠DEF,∴△ABE∽△FDE.∴ABBEDFDE.∵E是BD的中点,FDECBAG321ABCEDFEGFA

BCD∴BE=DE.∴AB=DF.∵F是CD的中点,∴CF=FD.∴CD=2AB.∵∠ABE=∠EDC,∠AGB=∠CGD,∴△ABG∽△CDG.∴12BGABGDCD.(2)证明:∵AB∥CF,AB=CF,∴四边形ABC

F是平行四边形.∵CE=BE,BE=DE,∴CE=ED.∵CF=FD,∴EF垂直平分CD.∴∠CFA=90°.∴四边形ABCF是矩形.

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 112
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?