【文档说明】2022年中考数学一轮复习习题精选《探索型问题》(含答案).doc,共(72)页,8.717 MB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-41775.html
以下为本文档部分文字说明:
1.(燕山地区一模)豆豆妈妈用小米运动手环记录每天的运动情况,下面是她6天的数据记录(不完整):日期4月1日4月2日4月3日4月4日4月5日4月6日步行数(步)10672492755436648步行距离(公里)6.83.
13.44.3卡路里消耗(千卡)1577991127燃烧脂肪(克)20101216(1)4月5日,4月6日,豆豆妈妈没来得及作记录,只有手机图片,请你根据图片数据,帮她补全表格.(2)豆豆利用自己学习的统计知识,把妈妈步行距离
与燃烧脂肪情况用如下统计图表示出来,请你根据图中提供的信息写出结论:.(写一条即可)步行距离燃烧脂肪10152052530304月6日4月5日4月4日4月3日4月2日25燃烧脂肪(千卡)50日期4月1
日2015104月1日-6日妈妈步行距离与燃烧脂肪情况统计图步行距离(公里)(3)豆豆还帮妈妈分析出步行距离和卡路里消耗数近似成正比例关系,豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为__________公里.(直接写
出结果,精确到个位)解:(1)填数据……………………….2′(2)写出一条结论:……………………….4′(3)预估她一天步行约为__________公里.(直接写出结果,精确到个位)„„„„„„5′2.(延庆区初三统一练习)如图1,正方形ABCD中,点E是BC
延长线上一点,连接DE,过点B作BF⊥DE于点F,连接FC.(1)求证:∠FBC=∠CDF.(2)作点C关于直线DE的对称点G,连接CG,FG.①依据题意补全图形;②用等式表示线段DF,BF,CG之间的数量关系并加以证明.(1)证
明:∵四边形ABCD是正方形,∴∠DCB=90°.∴∠CDF+∠E=90°.∵BF⊥DE,图1备用图FDECBAFDECBA∴∠FBC+∠E=90°.∴∠FBC=∠CDF.……2分(2)①……3分②猜想:数
量关系为:BF=DF+CG.证明:在BF上取点M使得BM=DF连接CM.∵四边形ABCD是正方形,∴BC=DC.∵∠FBC=∠CDF,BM=DF,∴△BMC≌△DFC.∴CM=CF,∠1=∠2.∴△MCF
是等腰直角三角形.∴∠MCF=90°,∠4=45°.……5分∵点C与点G关于直线DE对称,∴CF=GF,∠5=∠6.∵BF⊥DE,∠4=45°,∴∠5=45°,∴∠CFG=90°,∴∠CFG=∠MCF,∴CM∥GF.∵CM=CF,CF=GF,∴CM=GF,∴四边形CGFM是平行四边形,∴CG=MF
.GFDECBA∴BF=DF+CG.……7分3.(燕山地区一模)已知y是x的函数,自变量x的取值范围是x≠0的全体实数,下表是y与x的几组对应值.x„-3-2-1-12-131312123„y„25632-12-158-53185518178
32m629„小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是-2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点
,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=(4)结合函数的图象,写出该函数的一条性质:___________..解:(1)当自变量是-2时,函数值是32„„„„„„„„„„„„„1′-4yxO21342134-2-1-3556-4-3-1-2(2)
如图,该函数的图象;(略)„„„„„„„„„„„„„3′(3)标出x=2时所对应的点„„„„„„„„„„„„„4′且m=„„„„„„„„„„„„„5′(4)写出该函数的性质(一条即可):_____.„„„„„„„„„„„„„7′4.(西城区九年级统一
测试)如图,P为⊙O的直径AB上的一个动点,点C在»AB上,连接PC,过点A作PC的垂线交⊙O于点Q.已知5cmAB,3cmAC.设A、P两点间的距离为cmx,A、Q两点间的距离为cmy.OQPCBA某同学根据学习函数的经验,对
函数y随自变量x的变化而变化的规律进行探究.下面是该同学的探究过程,请补充完整:(1)通过取点、画图、测量及分析,得到了x与y的几组值,如下表:(cm)x012.533.545(cm)y4.04.75.04.84.13.7(说明:补全表格对的相关数值保留一位小数)(2)建立平
面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当2AQAP时,AP的长度均为__________cm.解:(1)„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„3分(2)如图5.„„„„„„„„„„„„„
„„„„„„„„„„„„„„„5分(3)2.42.„„„„„„„„„„„„„„„„„„„„„„„„„„„„„6分x(cm)011.82.533.545y(cm)4.04.75.04.84.54.13.73.0图55.(西城区九年级统一测试)正方形ABCD的边长为2,将射线AB
绕点A顺时针旋转,所得射线与线段BD交于点M,作CEAM于点E,点N与点M关于直线CE对称,连接CN.(1)如图1,当045时,①依题意补全图1.②用等式表示NCE与BAM之间的数量关系:__________.(2)当45
90时,探究NCE与BAM之间的数量关系并加以证明.(3)当090时,若边AD的中点为F,直接写出线段EF长的最大值.CDBA图1备用图CDBAM解:(1)①补全的图形如图7所示.„„„„„„„„„„„„„„„„„
„„„„„1分②∠NCE=2∠BAM.„„„„„„„„„„„„„„„„„„„„„„„„2分(2)当45°<α<90°时,=1802NCEBAM.„„„„„„„„„„„„„„„3分证明:如图8,连接CM,设射线AM与CD的交点为H.∵四边形ABCD为正方形,∴∠
BAD=∠ADC=∠BCD=90°,直线BD为正方形ABCD的对称轴,点A与点C关于直线BD对称.∵射线AM与线段BD交于点M,∴∠BAM=∠BCM=α.∴∠1=∠2=90.∵CE⊥AM,∴∠CEH=90°,∠3+∠5=90°.又∵∠1+∠4=90°,∠4=∠5,∴∠1=∠3.∴∠3=∠
2=90.∵点N与点M关于直线CE对称,∴∠NCE=∠MCE=∠2+∠3=1802BAM.„„„„„„„„„6分(3)21.„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„7分6.(通州区一模)图7图8答案:7.(市朝阳区综合练习(一))如图,在菱形ABCD中,∠DAB=
60°,点E为AB边上一动点(与点A,B不重合),连接CE,将∠ACE的两边所在射线CE,CA以点C为中心,顺时针旋转120°,分别交射线AD于点F,G.(1)依题意补全图形;(2)若∠ACE=α,求∠AFC的大小(用含α的式子表示);(3)用等式表示线段AE、AF与CG之间的数量
关系,并证明.(1)补全的图形如图所示.„„„„„„„„„„„„„„„„„„„„„„„„„„1分(2)解:由题意可知,∠ECF=∠ACG=120°.∴∠FCG=∠ACE=α.∵四边形ABCD是菱形,∠DAB=60°,∴∠DAC=∠BAC=30°
.„„„„„2分∴∠AGC=30°.∴∠AFC=α+30°.„„„„„„„„„„„„3分(3)用等式表示线段AE、AF与CG之间的数量关系为CGAFAE3.证明:作CH⊥AG于点H.由(2)可知∠BAC=∠DAC
=∠AGC=30°.∴CA=CG.„„„„„„„„„„„„„„„„„„„„„„„„5分∴HG=21AG.∵∠ACE=∠GCF,∠CAE=∠CGF,∴△ACE≌△GCF.„„„„„„„„„„„„„„„„„„6分∴AE=FG.在Rt△HCG中,.2
3cosCGCGHCGHG∴AG=3CG.„„„„„„„„„„„„„„„„„„„„„7分即AF+AE=3CG.8.(顺义区初三练习)如图,在正方形ABCD中,E是BC边上一点,连接AE,延长CB至点F,使BF=BE,过点F作FH⊥AE于点H,射线FH分别交AB、CD于点M、N,交对角线A
C于点P,连接AF.(1)依题意补全图形;(2)求证:∠FAC=∠APF;(3)判断线段FM与PN的数量关系,并加以证明.解:(1)补全图如图所示.„„„„„„„„„„„„„„„„„„„„„„1分(2)证明∵正方形ABCD,∴∠BAC=∠BCA=45°,∠ABC=9
0°,∴∠PAH=45°-∠BAE.∵FH⊥AE.∴∠APF=45°+∠BAE.∵BF=BE,∴AF=AE,∠BAF=∠BAE.∴∠FAC=45°+∠BAF.∴∠FAC=∠APF.„„„„„„„„„„„4分(3)判断:FM=PN.„„„„„„„„„„„„„„5分证明:过B作BQ∥MN交
CD于点Q,∴MN=BQ,BQ⊥AE.∵正方形ABCD,∴AB=BC,∠ABC=∠BCD=90°.∴∠BAE=∠CBQ.∴△ABE≌△BCQ.∴AE=BQ.EDCBAMHPNFDACBEQMHPNFDACBE∴AE
=MN.∵∠FAC=∠APF,∴AF=FP.∵AF=AE,∴AE=FP.∴FP=MN.∴FM=PN.„„„„„„„„„„„„„„„„„„„„„„„8分9.(平谷区中考统一练习)在△ABC中,AB=AC,CD⊥BC于点C,交∠ABC的平分线于点D,AE平分∠BAC交
BD于点E,过点E作EF∥BC交AC于点F,连接DF.(1)补全图1;(2)如图1,当∠BAC=90°时,①求证:BE=DE;②写出判断DF与AB的位置关系的思路(不用写出证明过程);(3)如图2,当∠BAC=α时,直接写出α,DF,AE的关系
.解:(1)补全图1;·············································1DFEABC(2)①延长AE,交BC于点H.·················2∵AB=AC,AE平分∠BAC,∴AH⊥BC于H
,BH=HC.∵CD⊥BC于点C,GDFEAHBC∴EH∥CD.∴BE=DE.······································3②延长FE,交AB于点G.由AB=AC,得∠ABC=∠ACB.由EF∥BC,得∠AGF=∠AFG.得AG=AF.由等腰三角形
三线合一得GE=EF.·······4由∠GEB=∠FED,可证△BEG≌△DEF.可得∠ABE=∠FDE.·························5从而可证得DF∥AB.························6(
3)tan2DFαAE.································710.(市大兴区检测)如图,在等腰直角△ABC中,∠CAB=90°,F是AB边上一点,作射线CF,过点B作BG⊥CF于点G
,连接AG.(1)求证:∠ABG=∠ACF;(2)用等式表示线段CG,AG,BG之间的等量关系,并证明.(1)证明:∵∠CAB=90°.∵BG⊥CF于点G,∴∠BGF=∠CAB=90°.∵∠GFB=∠CFA.……………
…………………………………1分∴∠ABG=∠ACF.………………………………………………2分FEDBCA(2)CG=2AG+BG.…………………………………………………3分证明:在CG上截取CH=BG,连接AH,…………………………4分∵△ABC是等腰直角三角形,∴∠CAB=90°,A
B=AC.∵∠ABG=∠ACH.∴△ABG≌△ACH.……………………………………………………5分∴AG=AH,∠GAB=∠HAC.∴∠GAH=90°.∴222AGAHGH.∴GH=2AG.…………………
……………………………………6分∴CG=CH+GH=2AG+BG.………………………………………7分11.(东城区一模)如图,在等腰△ABC中,AB=AC,点D,E分别为BC,AB的中点,连接AD.在线段AD上任取一点P,连接PB,PE.若BC=4,AD=6,设PD=x(
当点P与点D重合时,x的值为0),PB+PE=y.小明根据学习函数的经验,对函数y随自变量x的变换而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x与y的几组值,如下表:(说明:补全表
格时,相关数值保留一位小数).x0123456y5.24.24.65.97.69.5(参考数据:21.414,31.732,52.236)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)函数y的最小值为______________(保留
一位小数),此时点P在图1中的位置为________________________.解:(1)4.5.--------------------2分(2)--------------------4分(3)4.2,点P是AD与CE的交点.--------------------6分12.(东城
区一模)已知△ABC中,AD是BAC的平分线,且AD=AB,过点C作AD的垂线,交AD的延长线于点H.(1)如图1,若60BAC①直接写出B和ACB的度数;②若AB=2,求AC和AH的长;(2)如图2,用等式表示线段AH与AB+AC之间
的数量关系,并证明.解(1)①75B,45ACB;--------------------2分②作DE⊥AC交AC于点E.Rt△ADE中,由30DAC,AD=2可得DE=1,AE3.Rt△CDE中,由45ACD,DE=1,可得EC=1.∴
AC31.Rt△ACH中,由30DAC,可得AH332;--------------4分(2)线段AH与AB+AC之间的数量关系:2AH=AB+AC证明:延长AB和CH交于点F,取BF中点G,连接GH.易证△ACH≌△AFH.∴ACAF,HCHF.∴GHBC∥.∵ABA
D,∴ABDADB.∴AGHAHG.∴AGAH.∴2222ABACABAFABBFABBGAGAH.--------------7分13.(房山区一模)如图,Rt△ABC,∠C=90°,CA=CB=42cm,点P为AB边上的一个动
点,点E是CA边的中点,连接PE,设A,P两点间的距离为xcm,P,E两点间的距离为ycm.小安根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.PAEBC下面是小安的探究过程,请补充完
整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm012345678y/cm2.82.22.02.22.83.65.46.3(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图
象,解决问题:①写出该函数的一条性质:;②当2PEPA时,AP的长度约为cm.解:(1)4.5;„„„„„„„„„„„„„„„„„„„„„„„„„2分(2)yx1234567812345678910O„„„„„„„„
„„„„4分(3)①该函数有最小值或最大值;或当x>2时,y随x的增大而增大.„„„5分【注:答案不唯一】②当2PEPA时,AP的长度约为1.1cm.„„„„„„„„„„6分14.(房山区一模)如图,已知Rt△ABC中,∠C=90
°,∠BAC=30°,点D为边BC上的点,连接AD,∠BAD=α,点D关于AB的对称点为E,点E关于AC的对称点为G,线段EG交AB于点F,连接AE,DE,DG,AG.(1)依题意补全图形;(2)求∠AGE的度数(用含α的式子表示);
(3)用等式表示线段EG与EF,AF之间的数量关系,并说明理由.解(1)αABCDEFG„„„„„„„„„„„„„„„„„„1分(2)由轴对称性可知,AB为ED的垂直平分线,AC为EG的垂直平分线.∴AE=AG=AD.∴∠AEG=∠A
GE,∠BAE=∠BAD=ααDCBA∴∠EAC=∠BAC+∠BAE=30°+α∴∠EAG=2∠EAC=60°+2α∴∠AGE=12(180°-∠EAG)=60°-α„„„„„„„„„„„„„„„„„„3分或:∠AGE=∠AEG=90°-∠EAC=9
0°-(∠BAC+∠EAB)=90°-(30°+α)=60°-α„„„„„„„„„„„„„„„„„„„„„„„„„„3分(3)EG=2EF+AF„„„„„„„„„„„„„„„„„„„„„„„„„„„„„4分法1:设AC交EG于点H∵∠BAC=30°,∠AHF=90°∴FH
=12AF„„„„„„„„„„5分∴EH=EF+FH=EF+12AF„„„„6分又∵点E,G关于AC对称∴EG=2EH∴EG=2(EF+12AF)=2EF+AF„„„„„„„„„„„„„„„„„„„„„7分法2:在FG上截取NG=EF,连接AN.又∵AE=AG,∴∠A
EG=∠AGE∴△AEF≌△AGN∴AF=AN∵∠EAF=α,∠AEG=60°-α∴∠AFN=60°„„„„„„„„„„„„„„„„„„„„„„„„„„„„6分∴△AFN为等边三角形∴AF=FN∴EG=EF+FN+NG=2EF
+AF„„„„„„„„„„„„„„„„„„„„„„7分15.(房山区一模)在平面直角坐标系xOy中,当图形W上的点P的横坐标和纵坐标相等时,则称点P为图形W的“梦之点”.(1)已知⊙O的半径为1.①在点E(1,1
),F(-22,-22),M(-2,-2)中,⊙O的“梦之点”为;②若点P位于⊙O内部,且为双曲线kyx(k≠0)的“梦之点”,求k的取值范围.(2)已知点C的坐标为(1,t),⊙C的半径为2,若在⊙C上存在“梦之点”P,直接写出t的取值范围.(3)若二次函
数21yaxax的图象上存在两个“梦之点”11Ax,y,22Bx,y,且122xx,求二次函数图象的顶点坐标.解(1)①F;„„„„„„„„„„„„„„„„„„„„„„„„„„„1分②∵⊙O的半径为1.∴⊙O的“梦
之点”坐标为(-22,-22)和(22,22).„„„„„„2分又∵双曲线kyx(k≠0)与直线y=x的交点均为双曲线的“梦之点”,∴将(-22,-22)代入双曲线表达式中,得,1=2kxy„„„„„„„„„„„„„„„„„„„„„„„„„„3分∵点P位于⊙O内部.∴1
02k<<„„„„„„„„„„„„„„„„„„„„„„„„„„4分(2)-1≤t≤3„„„„„„„„„„„„„„„„„„„„„„„„„„„„„6分(3)由“梦之点”定义可得:11Ax,x,22Bx,x.则21xa
xax.整理得,2110axax解得,11x,21xa.把两个根代入122xx中,即112a解得,11a,213a.当1a时,21yxx,其顶点坐标为(12,54)„„„„„„
„„„7分当13a时,211133yxx,其顶点坐标为(12,1112)„„„„„„„„8分16.(丰台区一模)如图,Rt△ABC中,∠ACB=90°,点D为AB边上的动点(点D不与点A,点B重合),过点D作ED⊥CD交直线AC于点E.已知∠A=30°,AB=4
cm,在点D由点A到点B运动的过程中,设AD=xcm,AE=ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/c
m…12132252372…ABCEDy/cm…0.40.81.01.004.0…(说明:补全表格时相关数值保留一位小数)(2)在下面的平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;Oyx43211234(3)结合画出的函数图象,
解决问题:当AE=12AD时,AD的长度约为cm..解:(1)1.2;………………………2分(2)如右图;………………………4分(3)2.4或3.3………………………6分17.(丰台区一模)如图,Rt△ABC中,∠ACB=90°,CA=CB,过点C在△ABC外作射线CE,且∠BCE
=,点B关于CE的对称点为点D,连接AD,BD,CD,其中AD,BD分别交射线CE于点M,N.87654321GNMDACEB(1)依题意补全图形;(2)当=30°时,直接写出∠CMA的度数;(3)当0°<<45°时,用等式表示线段
AM,CN之间的数量关系,并证明.解:(1)如图;…………………1分(2)45°;…………………2分(3)结论:AM=2CN.…………………3分证明:作AG⊥EC的延长线于点G.∵点B与点D关于CE对称,∴CE是BD的垂直平分线.∴CB=CD.∴∠1=∠2=
.∵CA=CB,∴CA=CD.∴∠3=∠CAD.∵∠4=90°,∴∠3=12(180°∠ACD)=12(180°90°)=45°.∴∠5=∠2+∠3=+45°-=45°.…………………5分∵∠4=90°,CE是BD的垂直平分线,∴∠1+∠7=90°,∠1+∠6=
90°.∴∠6=∠7.∵AG⊥EC,∴∠G=90°=∠8.∴在△BCN和△CAG中,∠8=∠G,ABCE∠7=∠6,BC=CA,∴△BCN≌△CAG.∴CN=AG.∵Rt△AMG中,∠G=90°,∠5=45°,∴AM=
2AG.∴AM=2CN.…………………7分(其他证法相应给分.)18.(海淀区第二学期练习)某校九年级八个班共有280名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下
面的过程补全.收集数据调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是___________(填字母);A.抽取九年级1班、2班各20名学生的体质健康测试成绩组成样本B.抽取各班体育成绩较好
的学生共40名学生的体质健康测试成绩组成样本C.从年级中按学号随机选取男女生各20名学生学生的体质健康测试成绩组成样本整理、描述数据抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下:77
838064869075928381858688626586979682738684898692735777878291818671537290766878整理数据,如下表所示:年九年级部分学生学生的体质健康测试成绩统计表5
055x5560x6065x6570x7075x7580x8085x8590x9095x95100x11224552分析数据、得出结论调查小组将统计后的数据与去年同期九年
级的学生的体质健康测试成绩(直方图)进行了对比,成绩/分频数2017年九年级部分学生体质健康成绩直方图010864210095908580757065605550你能从中得到的结论是_____________,你的理由是__
____________________.体育老师计划根据年的统计数据安排75分以下的同学参加体质加强训练项目,则全年级约有________名同学参加此项目.解.C„„„„„„1分8085x8590x810„„2分(2)去年的体质健康测
试成绩比今年好.(答案不唯一,合理即可)„„„3分去年较今年低分更少,高分更多,平均分更大.(答案不唯一,合理即可)(3)70.„„6分19.(海淀区第二学期练习)如图,已知60AOB,点P为射线OA上的一个动点,过点P作PEOB,交OB于点E,点D在AOB内,
且满足DPAOPE,6DPPE.(1)当DPPE时,求DE的长;(2)在点P的运动过程中,请判断是否存在一个定点M,使得DMME的值不变?并证明你的判断..解:(1)作PF⊥DE交DE于F.∵PE⊥BO,60AOB,∴30OPE.∴30
DPAOPE.∴120EPD.„„„„„„1分∵DPPE,6DPPE,∴30PDE,3PDPE.∴3cos3032DFPD.∴233DEDF.„„„„„„3分BAOEDPFDEOBAP(2)当M点在射线OA上且满足23OM时,DMME的值不变,
始终为1.理由如下:„„„„„„4分当点P与点M不重合时,延长EP到K使得PKPD.∵,DPAOPEOPEKPA,∴KPADPA.∴KPMDPM.∵PKPD,PM是公共边,∴KPM△≌DP
M△.∴MKMD.„„„„作ML⊥OE于L,MN⊥EK于N.∵23,60MOMOL,∴sin603MLMO.„„6分∵PE⊥BO,ML⊥OE,MN⊥EK,∴四边形MNEL为矩形.∴3ENML.∵6EKPEPKPEPD,∴ENNK.∵M
N⊥EK,∴MKME.∴MEMKMD,即1DMME.当点P与点M重合时,由上过程可知结论成立.„„„7分LNMDKEOBAPEABCD20、(怀柔区一模)如图,在等边△ABC中,BC=5cm,点D是线段BC上的一动点
,连接AD,过点D作DE⊥AD,垂足为D,交射线AC与点E.设BD为xcm,CE为ycm.小聪根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小聪的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与
y的几组值,如下表:x/cm00.511.522.533.544.55y/cm5.03.32.00.400.30.40.30.20(说明:补全表格上相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象
,解决问题:当线段BD是线段CE长的2倍时,BD的长度约为________cm.解:(1)约1.1;……………………………………………………………………………1分xy–1123456–1123456O(2)如图:………………………………………………………
…………………………………………4分(3)约1.7.………………………………………………………………………………………5分21.(门头沟区初三综合练习)地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态坏境保护意识,举办了“我参与,我环保”的知识竞赛.以下
是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:7688936578948968955089888989779487889291初二:7497968998746976727899729776997499739874(1)根据上表中的数据,将下列表格补充
完整;整理、描述数据:(说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下为不合格)分析数据:年级平均数中位数众数50x≤≤5960x≤≤6970x≤≤7980x≤≤8990x≤≤100初
一1236初二011018初一8488.5初二84.2574(2)得出结论:你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).解:(1)补全表格正确:初一:8„„„„„„„„„„„„„„„„1分众数:89„„
„„„„„„„„„„„„„„2分中位数:77„„„„„„„„„„„„„„„„3分(2)可以从给出的三个统计量去判断如果利用其它标准推断要有数据说明合理才能得分„„„„„„5分22.(门头沟区初三综合练习)如图,在△ABC中,AB=AC,2A
,点D是BC的中点,DEABE于点,DFACF于点.(1)EDB_________°;(用含的式子表示)(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转1802,与AC边交于点N.①根据条件补全图形;②写出DM与DN的数量关系并证明;③用等式
表示线段BMCN、与BC之间的数量关系,(用含的锐角三角函数表示)并写出解题思路.解:(1)EDB„„„„„„„„„„„„„„„„„1分(2)①补全图形正确„„„„„„„„„„„„„„2分②数量关系:DMDN„„„
„„„„„„„„„„3分FEDCBA∵,ABACBDDC∴DA平分BAC∵DEABE于点,DFACF于点∴DEDF,MEDNFD„„„„„„„„4分∵2A∴1802EDF∵1802MDN∴MDENDF∴M
DENDF△≌△„„„„„„„„5分∴DMDN③数量关系:sinBMCNBC„„„„„„„„6分证明思路:a.由MDENDF△≌△可得EMFNb.由ABAC可得BC,进而通过BDECDF△≌△,可得BECF进而得到2BEBMCNc.过BDERt△可得sinB
EBD,最终得到sinBMCNBC„„„„„7分23.(平谷区中考统一练习)在平面直角坐标系xOy中,抛物线223yxbx的对称轴为直线x=2.(1)求b的值;FEDCBAMN(2)在y
轴上有一动点P(0,m),过点P作垂直y轴的直线交抛物线于点A(x1,y1),B(x2,y2),其中12xx.①当213xx时,结合函数图象,求出m的值;②把直线PB下方的函数图象,沿直线PB向上翻
折,图象的其余部分保持不变,得到一个新的图象W,新图象W在0≤x≤5时,44y,求m的取值范围.解:(1)∵抛物线223yxbx的对称轴为直线x=2,∴b=2.················································
·1(2)①∴抛物线的表达式为243yxx.∵A(x1,y),B(x2,y),∴直线AB平行x轴.∵213xx,∴AB=3.∵对称轴为x=2,∴AC=12.·············································2∴当12x
时,54ym.···················3②当y=m=-4时,0≤x≤5时,41y;······4当y=m=-2时,0≤x≤5时,24y;····5∴m的取值范围为42m.·············
··624.(石景山区初三毕业考试)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.(1)按如下分数段整理、描述这两组数据:成绩x学生70≤x≤
7475≤x≤7980≤x≤8485≤x≤8990≤x≤9495≤x≤100甲乙114211(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:学生极差平均数中位数众数方差甲83.78613.21乙2483.78246.21(3)若从甲、乙两人中选择一人参加知识竞赛,你会选(填“甲”或“
乙),理由为.解:(1)0,1,4,5,0,0„„„„„„1分(2)14,84.5,81„„„„„„4分(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.(写出其
中一条即可)或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.„„„„„„6分(答案不唯一,理由须支撑推断结论)25.(石景山区初三毕业考试)在正方形ABCD中,M是BC边上一点,点P在射线AM上,将线段AP绕点A顺时针旋转90°得到线段AQ,连接BP,D
Q.(1)依题意补全图1;(2)①连接DP,若点P,Q,D恰好在同一条直线上,求证:2222DPDQAB;②若点P,Q,C恰好在同一条直线上,则BP与AB的数量关系为:.解:(1)补全图形如图1.„„„„„„„1分(2)①证明:连接BD,如
图2,∵线段AP绕点A顺时针旋转90°得到线段AQ,∴AQAP,90QAP°.∵四边形ABCD是正方形,∴ADAB,90DAB°.∴12.∴△ADQ≌△ABP.„„„„„„„3分∴DQBP,3Q.∵在RtQAP中,90QQPA°,∴390BPDQPA
°.∵在RtBPD中,222DPBPBD,又∵DQBP,222BDAB,∴2222DPDQAB.„„„„„„„5分②BPAB.„„„„„„„7分26.(顺义区初三练习)如图,P是半圆弧AB上一动点,连接PA、PB,过圆心O作OC∥BP交PA于点C,连接CB.已知AB=
6cm,设O,C两点间的距离为xcm,B,C两点间的距离为ycm.CBOAP小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm00.511.522.53y/c
m33.13.54.05.36(说明:补全表格时相关数据保留一位小数)(2)建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:直接写出△OBC周长C的取值范围是.解:(1)4.6.„„„„
„„„„„„„„„„„„„„„„„„„„„„„1分(2)„„„„„„„„„„„„„„„„„„„„„„„„„„„„„3分(3)6<C<12.„„„„„„„„„„„„„„„„„„„„„„„5分27.(通州区一模)答案:28.(延庆区初三统一练习)在平面直角坐标系xOy中,抛物线y=ax2-4ax+3a
(a>0)与x轴交于A,B两点(A在B的左侧).(1)求抛物线的对称轴及点A,B的坐标;(2)点C(t,3)是抛物线243(0)yaxaxaa上一点,(点C在对称轴的右侧),过点C作x轴的垂线,垂足为点D.①当CDAD时,求此时抛物线的表达式;②当CDAD时,求t的
取值范围.解:(1)对称轴:x=2……1分A(1,0)或B(3,0)……1分(2)①如图1,∵AD=CD∴AD=3∴C点坐标为(4,3)……3分将C(4,3)代入243yaxaxa∴316163aaa∴a=1∴抛物线的表达式为:243yxx……4
分②34t……6分过程略29.(燕山地区一模)如图,抛物线)0(2acbxaxy的顶点为M,直线y=m与抛-1-2-3-3-2-1y123456x54321O物线交于点A,B,若△AMB为等腰直
角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶.(1)由定义知,取AB中点N,连结MN,MN与AB的关系是(2)抛物线221xy对应的准蝶形必经过B
(m,m),则m=,对应的碟宽AB是(3)抛物线)0(3542aaaxy对应的碟宽在x轴上,且AB=6.①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P(px,py),使得∠APB为锐角,若有,请求出py的取值范围.若没有,请说明理由.解:(1)MN
与AB的关系是MN⊥AB,MN=21AB„„„„„„„„„„„„„2′(2)m=2对应的碟宽是4„„„„„„„„„„„„„4′(3)①由已知,抛物线必过(3,0),代入)0(3542aaaxy得,03549aay
=moyxMBA准蝶形AMBABM1Oxy31a∴抛物线的解析式是3312xy„„„„„„„„„„„„„5′②由①知,3312xy的对称轴上P(0,3),P(0,-3)时,∠APB为直角,∴在此抛物线的对称轴上有这样的点P,使得∠APB为锐角,py
的取值范围是33ppyy或„„„„„„„„„„„„„7′30.(年昌平区第一学期期末质量抽测)25.小明根据学习函数的经验,对函数4254yxx的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)自变量x的取值范
围是全体实数,x与y的几组对应数值如下表:x…-2-1012…y…4.33.20-2.2-1.402.83.743.72.80-1.4-2.2m3.24.3…其中m=;(2)如图,在平面直角坐标系xOy
中,描出了以上表中各组对应值为坐标的点,根据描出的点,画出该函数的图象;(3)观察函数图象,写出一条该函数的性质;(4)进一步探究函数图象发现:①方程42540xx有个互不相等的实数根;②有两个点(x1,
y1)和(x2,y2)在此函数图象上,当x2>x1>2时,比较y1和y2的大小关系为:y1y2(填“>”、“<”或“=”);③若关于x的方程4254xxa有4个互不相等的实数根,则a的取值范围9432541214129414543211
5115是.答案:(1)m=0,„„„„„1分(2)作图,„„„„„2分(3)图像关于y轴对称,(答案不唯一)„„„„„3分(4)(5)944a31.(年海淀区第一学期期末)在△ABC中,∠A
90°,ABAC.(1)如图1,△ABC的角平分线BD,CE交于点Q,请判断“2QBQA”是否正确:yxO–1–2–3–41234–1–2–3–412345________(填“是”或“否”);(2)点P是△ABC所在平面内的一点,连接PA,PB,且PB2PA.①如图2,点P在△ABC内
,∠ABP30°,求∠PAB的大小;②如图3,点P在△ABC外,连接PC,设∠APCα,∠BPCβ,用等式表示α,β之间的数量关系,并证明你的结论.PPEDQBCABCABCA图1图2图3解:(1
)否.„„„„„„1分(2)①作PD⊥AB于D,则∠PDB=∠PDA=90°,∵∠ABP=30°,∴12PDBP.„„„„„„2分∵2PBPA,∴22PDPA.∴2sin2PDPABPA.由∠PAB是锐角,得∠PAB=45°.„„„„„„3分另
证:作点P关于直线AB的对称点'P,连接',','BPPAPP,则',',','PBAPBAPABPABBPBPAPAP.∵∠ABP=30°,DPABCP'BCAP∴'60PBP.∴△'PBP是等边三角形.∴'PPBP.∵2PBPA
,∴'2PPPA.„„„„„„2分∴222''PPPAPA.∴'90PAP.∴45PAB.„„„„„„3分②45,证明如下:„„„„„„4分作AD⊥AP,并取AD=AP,连接DC,DP.∴∠DAP=90°.∵∠BA
C=90°,∴∠BAC+∠CAP=∠DAP+∠CAP,即∠BAP=∠CAD.∵AB=AC,AD=AP,∴△BAP≌△CAD.∴∠1=∠2,PB=CD.„„„„„„5分∵∠DAP=90°,AD=AP,∴2PDPA,∠ADP=∠APD=45°.∵2PBPA,∴PD=PB=CD.∴∠DCP=
∠DPC.∵∠APCα,∠BPCβ,∴45DPC,12.321EDACBP∴31802902DPC.∴139045ADP.∴45.„„„„„„7分32.(门头沟区第一学期期末调研试卷)如图25-
1,点C是⊙O中直径AB上的一个动点,过点C作CDAB交⊙O于点D,点M是直径AB上一固定点,作射线DM交⊙O于点N.已知6cmAB,2cmAM,设线段AC的长度为xcm,线段MN的长度为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探索.下
面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:/cmx0123456/cmy43.32.82.52.12(说明:补全表格时相关数值保留一位小数)(2)在图25-2中建立平面直角坐标系,描出以补全后
的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当ACMN时,x的取值约为__________cm.NCDOBACM图25-1图25-2答案:25.(本小题满分6分)(1)2.3„
„„„„„„„„„„„„„„„„„„„„„„„„„1分(2)坐标系正确„„„„„„„„„„„„„„„„„„„„3分描点正确„„„„„„„„„„„„„„„„„„„„4分连线正确„„„„„„„„„„„„„„„„„„„„5分(3)2.6„
„„„„„„„„„„„„„„„„„„„„„„„„„6分33.(密云区初三(上)期末)如图,RtABC中,90C,AC=BC,AB=4cm.动点D沿着A→C→B的方向从A点运动到B点.DEAB,垂足为E.
设AE长为xcm,BD长为ycm(当D与A重合时,y=4;当D与B重合时y=0).小云根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小云的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm00.5
11.522.533.54xy342654321OEDCBAy/cm43.53.22.82.11.40.70补全上面表格,要求结果保留一位小数.则t__________.(2)在下面的网格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数
的图象.(3)结合画出的函数图象,解决问题:当DB=AE时,AE的长度约为cm.答案:(1)2.9„„„„„„„„„„„„„„„.2分(2)„„„„„„.„„„„„„„„.4分(3)2.3..„„„„„„„„„.5分34.(怀柔区初一第一学期期末)探究多边形内角和问题.连接多边形不相邻的两个
顶点的线段叫做多边形的对角线.从多边形某一个顶点出发的对角线可以把一个多边形分成几个三角形.这样就把多边形内角和问题转化为三角形内角和问题了.(1)请你试一试,做一做,把下面表格补充完整:名称图形内角和三角形180°四边形2180°=360°五边形六边形.........根据表格探究发现的
规律,完成下面的问题:(2)七边形的内角和等于度;(3)如果一个多边形有n条边,请你用含有n的代数式表示这个多边形的内角和:.答案(1)图形内角和三角形180°四边形2180°=360°五边形3180°=540°六边形4180°=720°.........„„„„„
„„„„„„„„„„„„„„„„„„„„„„„„„3分(2)900°„„„„„„„„„„„„„„4分(3)(n-2)180°„„„„„„„„„„„„„„5分35.(昌平区二模)有这样一个问题:探究函数3126yxx的图象与性质.小彤根据学习函数
的经验,对函数3126yxx的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:x43.532101233.54y8374832831161168374883(1)求m的值为;(2)如图,在平面直角坐标
系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;(3)方程31226xx实数根的个数为;(4)观察图象,写出该函数的一条性质;(5)在第(2)问的平面直角坐标系中画出直线12yx,根据图象写出方程311262xxx
的一个正数根约为(精确到0.1).m0-4-3-24312-1Oyx解:(1)32„„„„„„„„„„„„„1分(2)如图所示„„„„„„„„„„„„„2分(3)3个„„„„„„„„„„„„„3分(4)图象关于原点中心对称,x>2时,y随x的增
大而增大等(答案不唯一).„„„„„„„„„„„„„4分(5)3.87„„„„„„„„„„„„„6分36.(朝阳区二模)在数学活动课上,老师提出了一个问题:把一副三角尺如图1摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三
角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt△ABC中,∠C=90°,A
C=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF=°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.(2)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0123456y/cm6.95.
34.03.34.56图1图2(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为cm.答案:解:(1)60„„„„„„„„„„„„„„„
„„„„„„„„„„„„1分答案不唯一,如:(2)x/cm0123456y/cm6.95.34.03.33.54.56„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„2分„„„„„5分(3)(4)3.22„„„„„„„„„„„„„„„„„„„„„„„„
„„„„„„„„6分37.(房山区二模)已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连接CB.(1)直接写出∠D与∠MAC之间的数量关系;(2)①如图1,猜想AB,BD与BC之间的数量关系,并说明理由;②如图2,直接写出AB,B
D与BC之间的数量关系;(3)在MN绕点A旋转的过程中,当∠BCD=30°,BD=2时,直接写出BC的值.解:(1)相等或互补;„„„„„„„„„„„„„„„„„„„„„„„„„„2分(注:每个1分)(2)①猜想:BD+AB=2
BC„„„„„„„„„„„„„„„„„„„„„„3分如图1,在射线AM上截取AE=BD,连接CE.又∵∠D=∠EAC,CD=AC∴△BCD≌△ECA∴BC=EC,∠BCD=∠ECA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠ECA=90°即
∠ECB=90°∴BE=2BC∵AE+AB=BE=2BC∴BD+AB=2BC„„„„„„„„„„„„„„„„„„„„„4分②AB-BD=2BC„„„„„„„„„„„„„„„„„„„„„„„5分(3)BC=3+1或3-1„„„„„„„„„„„„„„„„„„„„„„„7分3
8.(丰台区二模)数学活动课上,老师提出问题:如图,有一张长4dm,宽3dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.
下面是探究过程,请补充完整:(1)设小正方形的边长为xdm,体积为ydm3,根据长方体的体积公式得到y和x的关系NM图1ECADB式:;(2)确定自变量x的取值范围是;(3)列出y与x的几组对应值.x/dm…1814381
258347819854…y/dm3…1.32.22.73.02.82.51.50.9…(说明:表格中相关数值保留一位小数)(4)在下面的平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;3Oyx421123(5)结合画出的函数图象,解决问题:当小正方形的边
长约为dm时,盒子的体积最大,最大值约为dm3.解:(1)4232yxxx.……1分(2)0<x<1.5.………………………2分(3)如下表,………………………4分x/dm121y/dm3.02.0(4)如右图;………………………5分(5)21至
85均可,3.0至3.1均可………………………6分39.(市朝阳区初二年级第一学期期末)请按要求完成下面三道小题.(1)如图1,ABAC.这两条线段一定关于某条直线对称吗?如果是,请画出对称轴a(尺规作图,保留作图痕迹);如果不是,请说明理由.(2)如图2,已
知线段AB和点C.求作线段CD(不要求尺规作图),使它与AB成轴对称,且A与C是对称点,标明对称轴b,并简述画图过程.(3)如图3,任意位置的两条线段AB,CD,ABCD.你能通过对其中一条线段作有限次的轴对称使它们重合吗?如果能,请描述操作方
法;如果不能,请说明理由.(1)答案不唯一,如:作BAC的平分线所在直线.图略.„„„„„„„„2分(2)如图所示.„„„„„„„„„„„„3分①连接AC;②作线段AC的垂直平分线,即为对称轴b;„„„„„„„„„„„4分③
作点B关于直线b的对称点D;④连接CD即为所求.„„„„„„„„„„„„„5分(3)先类比(2)的步骤画图,通过一次轴对称,把问题转化为(1)的情况,再做一次轴对称即可满足条件.„„„„„„„„„„„„„„„„„„„„„„„„„6分40
.(市丰台区初二期末)小刚根据学习“数与式”的经验,想通过由“特殊到一般”的方法探究下面二次根式的运算规律.以下是小刚的探究过程,请补充完整:(1)具体运算,发现规律.特例1:111242;特例2:11
2393;特例3:1134164;特例4:.(举一个符合上述运算特征的例子)(2)观察、归纳,得出猜想.如果n为正整数,用含n的式子表示这个运算规律:.(3)证明猜想,确认猜想的正确性.答案:
41.(市丰台区初二期末)如图,△ABC是等边三角形.点D是BC边上一动点,点E,F分别在AB,AC边上,连接AD,DE,DF,且∠ADE=∠ADF=60°.小明通过观察、实验,提出猜想:在点D运动的过程中,始终
有AE=AF.小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:利用AD是∠EDF的角平分线,构造△ADF的全等三角形,然后通过等腰三角形的相关知识获证.想法2:利用AD是∠EDF的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.
想法3:将△ACD绕点A顺时针旋转至△ABG,使得AC和AB重合,然后通过全等三角形的相关知识获证.…….请你参考上面的想法,帮助小明证明AE=AF.(一种方法即可)答案:42:(市海淀区八年级期末)对于0,
1以及真分数p,q,r,若p<q<r,我们称q为p和r的中间分数.为了帮助我们找中间分数,制作了下表:两个不等的正分数有无数多个中间分数.例如:上表中第③行中的3个分数13、12、23,有112323,所以12为
13和23的一个中间分数,在表中还可以找到13和23的中间分数25,37,47,35.把这个表一直写下去,可以找到13和23更多的中间分数.(1)按上表的排列规律,完成下面的填空:①上表中括号内应填的数为;②如果把上面的表一直写下去,那么表中第一个出现的35和23的中间分数
是;(2)写出分数ab和cd(a、b、c、d均为正整数,acbd,cd)的一个..中间分数(用含a、b、c、d的式子表示),并证明;(3)若sm与tn(m、n、s、t均为正整数)都是917和815的中间分数,则mn的最小值为.解
:(1)①27;-----------------------------------------------------------1分②58.--------------------------------------------------------
-----------------------3分(2)本题结论不唯一,证法不唯一,如:结论:acbd.------------------------------------------------
--------------------5分证明:∵a、b、c、d均为正整数,acbd,cd,∴201cabacabdacabcaddbbbdbbbdbbdd,201acdaccbdacca
dbcbddbdddbdbddb.∴aaccbbdd.-----------------------------------------------------------8分(3)1504.---------------------------------
--------------------------------10分43.(市怀柔区初二期末)现场学习:在一次数学兴趣小组活动中,老师和几个同学一起探讨:在ban中,a,b,n三者关系.同学甲:已知a,n,可以求b,是我们学过的乘方运
算,其中b叫做a的n次方.如:823,其中-8是-2的3次方.同学乙:已知b,n,可以求a,是我们学过的开方运算,其中a叫做b的n次方根.如:422,其中2是4的二次方根(或平方根);2733,其中-3是-27的三次方根(或立方根).老师:两位同学说的很好,那
么请大家计算:(1)81的四次方根等于___________;-32的五次方根等于___________.同学丙:老师,如果已知a和b,那么如何求n呢?又是一种什么运算呢?老师:这个问题问的好,已知a,
b,可以求n,它是一种新的运算,称为对数运算.这种运算的定义是:若ban(a>0,1a),n叫做以a为底b的对数,记作:bnalog.例如:823,3叫做以2为底8的对数,记作8log32.根据题意,请
大家计算:(2)27log3_______;2641164log216___.随后,老师和同学们又一起探究出对数运算的一条性质:如果a>0,a≠1,M>0,N>0,那么NMMNaaalogloglog.(3)请你利用上述性质计算:5
51log3log3.(1)81的四次方根3;„„„„„„„1分-32的五次方根-2.„„„„„„„2分(2)log327=3;„„„„„„„3分1641164log216()=8.„„„„„„„4分(3)解:log53+log513=log5313„„„„
„„„5分=log51„„„„„„„6分=0.„„„„„„„7分44.(市门头沟区八年级期末)已知:在△ABC中,∠CAB=90°,AB=AC.(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上两动点(不与B,C重合),点P在点Q左侧,且A
P=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小明通过观察和实验,提出猜想:在点P,Q运动的过程中,始终有2PMPA.他把这个猜想与同学们进行交流,通过讨论,形成以下证明猜想的思路:(Ⅰ)要
想证明2PMPA,只需证△APM为等腰直角三角形;(Ⅱ)要想证明△APM为等腰直角三角形,只需证∠PAM=90°,PA=AM;„请参考上面的思路,帮助小明证明2PMPA.解:(1)∵△ABC为等腰直角三角形,„„„„„„„„„„„„„„„„„
„„1分∴∠B=45°.∴∠APC=∠BAP+∠B=65°.∵AP=AQ,∴∠AQB=∠APC=65°.„„„„„„„„„„„„„„„„„„„„„2分(2)①补全图形,如图所示.„„„„„„„„„„„„„„„„„„„„„3分证明:如图,连接CM.∵△ABC为等腰直角三角形,∴∠B=
∠ACB,∠BAC=90°.又∵AP=AQ,∴∠APQ=∠AQB.∴∠APB=∠AQC.∴△APB≌△AQC(AAS).„„„„„„„„„„„„„„„„„„4分∴∠1=∠2.又∵点Q关于直线AC的对称点为M,连接AM,CM.∴△AMC≌△AQC.„„„„„„„„„„„„„„„
„„„„„„5分∴∠2=∠3,AM=AQ.∴∠1=∠3.又∵∠BAC=∠PAC+∠1=90°,∠PAM=∠PAC+∠3,∴∠PAM=∠BAC=90°.„„„„„„„„„„„„„„„„„„„„„6分又∵AP=
AQ,AM=AQ.∴AP=AM.„„„„„„„„„„„„„„„„„„„„„„„„„„7分∴△PAM为等腰直角三角形,∴由勾股定理得2.PMPA„„„„„„„„„„„„„„„„„„8分45.(市西城区八年级期末)在△ABC中,∠A=60°,BD,CE是△
ABC的两条角平分线,且BD,CE交于点F.(1)如图1,用等式表示BE,BC,CD这三条线段之间的数量关系,并证明你的结论;小东通过观察、实验,提出猜想:BE+CD=BC.他发现先在BC上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD即可.①下
面是小东证明该猜想的部分思路,请补充完整:ⅰ)在BC上截取BM,使BM=BE,连接FM,则可以证明△BEF与____________全等,判定它们全等的依据是______________;ⅱ)由∠A=60°,BD,CE是△ABC的两条角平分线,可以得出∠E
FB=_______°;„„②请直接利用....ⅰ),ⅱ)已得到的结论,完成证明猜想BE+CD=BC的过程.(2)如图2,若∠ABC=40°,求证:BF=CA.解:(1)①△BMF,边角边,60;„„„„„„„„3分②证明:如图1.∵由ⅰ)知△BEF≌△BMF,∴∠2=∠1.∵由
ⅱ)知∠1=60°,∴∠2=60°,∠3=∠1=60°.∴∠4=180°-∠1-∠2=60°.∴∠3=∠4.„„„„„„„„„„„„4分∵CE是△ABC的角平分线,∴∠5=∠6.在△CDF和△CMF中,
∠3=∠4CF=CF,∠5=∠6,∴△CDF≌△CMF.图2图1图1∴CD=CM.∴BE+CD=BM+CM=BC.„„„„„„„„„„„„„„„„„„„5分(2)证明:作∠ACE的角平分线CN交AB于点N,如图2.∵∠A=60°,∠ABC=40°,∴∠ACB=180°-∠A-∠ABC=80
°.∵BD,CE分别是△ABC的角平分线,∴∠1=∠2=12∠ABC=20°,∠3=∠ACE=12∠ACB=40°.∵CN平分∠ACE,∴∠4=12∠ACE=20°.∴∠1=∠4.∵∠5=∠2+∠3=60°,∴∠5=∠A.∵∠6=∠1+∠5,∠7=
∠4+∠A,∴∠6=∠7.∴CE=CN.∵∠EBC=∠3=40°,∴BE=CE.∴BE=CN.在△BEF和△CNA中,∠5=∠A∠1=∠4,图2BE=CN,∴△BEF≌△CNA.∴BF=CA.„„„„„„„„„„„„„„„„„„„„
„„7分46.(大兴区八年级第一学期期末)(1)在等边三角形ABC中,①如图1,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图2,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此
时∠BFE的度数是度;(2)如图3,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).26.(延庆区八年级第一学区期末)如图-1,△A
BC和△DEC都是等腰直角三角形,∠ACB=∠DCE=90°,E在线段AC上,连接AD,BE的延长线交AD于F.(1)猜想线段BE,AD的数量关系和位置关系:________________________(不必证明);(2)当点E为△AB
C内部一点时,使点D和点E分别在AC的两侧,其它条件不变.①请你在图-2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立,请说明理由.解:(1)BE=AD;BE⊥AD„„„„„„„„„2分(2)①如图„„„3分②(1)中结论仍然成立。„
„„„„„„„„„„„4分证明:∵△ABC和△DEC都是等腰直角三角形,∠ACB=∠DCE=90°∴BC=AC,EC=DC∵∠ACB=∠DCE=90°∴∠ACB=∠DCE∴∠BCE=∠ACD„„„„„„„„5分在△BCE和△ACD中BC=AC∠BCE=∠ACDEC=DC∴△BCE≌
△ACD(SAS)„„„„„„„„„„„6分EACBFEACBD4321FEABCD∴BE=AD„„„„„„„„„„„„„„„„„7分∠1=∠2∵∠3=∠4∴∠AFB=∠ACB=90°„„„„„„8分∴B
E⊥AD47.(西城区二模)如图1,在等边三角形ABC中,CD为中线,点Q在线段CD上运动,将线段QA绕点Q顺时针旋转,使得点A的对应点E落在射线BC上,连接BQ,设∠DAQ=α(0°<α<60°且α≠30°).(1)当0°<α<30°时,①在图1中依题意画出
图形,并求∠BQE(用含α的式子表示);②探究线段CE,AC,CQ之间的数量关系,并加以证明;(2)当30°<α<60°时,直接写出线段CE,AC,CQ之间的数量关系.图1备用图解:(1)当0°<α<30
°时,①画出的图形如图9所示.„„„„„1分∵△ABC为等边三角形,∴∠ABC=60°.∵CD为等边三角形的中线,Q为线段CD上的点,由等边三角形的对称性得QA=QB.∵∠DAQ=α,∴∠ABQ=∠DAQ=α,∠QBE=60°-α.∵线段QE为线段QA绕点Q顺
时针旋转所得,∴QE=QA.∴QB=QE.可得1802(60)602.„„„2分②.„„„„„„„„„„„„„„„„„„„„„3分证法一:如图10,延长CA到点F,使得AF=CE,连接QF,作QH⊥AC于点H.∵∠BQE=60
°+2α,点E在BC上,∴∠QEC=∠BQE+∠QBE=(60°+2α)+(60°-α)=120°+α.∵点F在CA的延长线上,∠DAQ=α,∴∠QAF=∠BAF+∠DAQ=120°+α.∴∠QAF=∠QEC.又∵AF=CE,QA=QE,∴△QAF≌△QEC.∴QF=QC.图10图9∵Q
H⊥AC于点H,∴FH=CH,CF=2CH.∵在等边三角形ABC中,CD为中线,点Q在CD上,∴∠ACQ=12ACB=30°,即△QCF为底角为30°的等腰三角形.∴3coscos302CHCQHCQCQCQ.∴CEAC
AFACCF23CHCQ.即.„„„„„„„„„„„„„„„„6分思路二:如图11,延长CB到点G,使得BG=CE,连接QG,可得△QBG≌△QEC,△QCG为底角为30°的等腰三角形,与证法一同理可得CEACBGBCCG
3CQ.(2)如图12,当30°<α<60°时,.„„„„„„„„„„7分图11图12