【文档说明】《用平方差公式进行因式分解》教学设计2-八年级上册数学华师大版.doc,共(3)页,56.000 KB,由小喜鸽上传
转载请保留链接:https://www.ichengzhen.cn/view-13984.html
以下为本文档部分文字说明:
《用平方差公式分解因式》教学设计【教学目标】知识技能:1.了解运用公式法分解因式的意义.2.知道提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式分解因式.3.分解因式要分解到不能再分解为止.数学思考:1.通过对平方差公式特点的辨析,培
养学生的观察能力.2.通过乘法公式:(a+b)(a+b)=a2﹣b2逆向变形,进一步发展观察、归纳、类比、概括等能力,发展有条理地思考及语言表达能力。问题解决:发展学生运用平方差公式解决问题的能力.情感态度:通过学生探究的过程,使学生养成认真观察,细致分析的学习
态度,获得成功的体验,锻炼克服困难的意志。【教学重点】掌握运用平方差公式分解因式.【教学难点】灵活运用平方差公式,解决实际问题.【教学过程】一、复习回顾:1.把一个多项式化为几个的的形式就是因式分解(也叫分解因式
).2.下列由左边到右边的变形,哪些是因式分解,哪些不是,为什么?1)(2x-1)2=4x2-4x+12)3x2+9xy-3x=3x(x+3y-1)3)x2-2x+1=x(x-2)+13.把下列各式分解因式1)8x-72=(2)-4x3-12x2+4x=(3)
m(a-b)-n(a-b)=4.计算下列各式:(1)(x+3)(x−3);(2)(1+2a)(1−2a);平方差公式:(a+b)(a+b)=a2﹣b2二、设置情景:从边长为a的正方形减去边长为b(a>b),剩余面积为(a2-b2),你能用不同的代数式表示红色部分的面积吗?结论:a2-b2=(a
+b)(a-b)二、平方差公式的特征辨析:把乘法公式(a+b)(a-b)=a2-b2反过来得:a2-b2=(a+b)(a-b)我们可以运用公式对某些多项式进行分解因式。这种方法叫公式法。注意:1、被分解的多项式含有两项,且这两项异号,并且能写成(
)2-()2的形式。2、分解的结果是两个底数的和乘以两个底数的差的形式。试一试:下列多项式能转化成()2-()2的形式吗?如果能,请将其转化成()2-()2的形式。(1)m2-1=(2)4m2-9=(3)4m2+9=(4)-x2+25y2=做一做:((11))aa2--1166==a
a2--(())2==(())(())((22))6644--bb2==(())2--bb2==(())(())抢抢答答题题::看看谁谁又又好好又又快快地地把把下下列列式式子子分分解解因因式式(1)a2-82(2)16x2-y2(3)-91y2+4x2(4)4k2-25m2n2当堂编题
:例如:20062-20052=(2mn)2-(3xy)2=(x+z)2-(y+p)2=结结论论::公公式式中中的的aa、、bb无无论论表表示示数数、、单单项项式式、、还还是是多多项项式式,,只只要要被
被分分解解的的多多项项式式能能转转化化成成平平方方差差的的形形式式,,就就能能用用平平方方差差公公式式因因式式分分解解。。三三、、典型例题例例11::把把下下列列各各式式分分解解因因式式::((11))1166aa2--99bb2((22))((xx++yy))2
--((xx--yy))2说明:先先把把要要计计算算的的式式子子与与平平方方差差公公式式对对照照,,明明确确哪哪个个相相当当于于aa,,哪哪个个相相当当于于bb..牛刀小试:把下列各式分解因式①x2-161y2②(2a+b)2-(a+2b
)2拓展:用你学过的方法分解因式4x3-9xy2方法:先考虑能否用提取公因式法,再考虑能否用平方差公式分解因式。结论:多项式的因式分解要分解到不能再分解为止。分解因式:1.4x3-4x2.X4-y4结论:分解因式的一般步骤:一提二套多项式的因式分解要分解到不能再分解为止。四、再
攀高峰:【课堂小结】a2-b2=(a+b)(a-b)两个数的平方差,等于这两个数的和与这两个数的差的乘积.注意:1.能提公因式的先提公因式;2.要分解到不能再分解为止。【作业布置】练习卷【板书设计】用平方差公式分解因式a2-b2=(a+b)(a-b)两个数的平方差,等于这两个数的和与这两个数的
差的乘积.注意:1.能提公因式的先提公因式;2.要分解到不能再分解为止。