【文档说明】课程名称:数据库系统概论课件.ppt,共(145)页,310.501 KB,由小橙橙上传
转载请保留链接:https://www.ichengzhen.cn/view-92386.html
以下为本文档部分文字说明:
数据库系统概论AnIntroductiontoDatabaseSystem第五章关系数据理论5.1问题的提出关系数据库逻辑设计针对具体问题,如何构造一个适合于它的数据模式数据库逻辑设计的工具──关系数据库的规范化理论认识抽象概念模型数据
模型转换学生选课系统学生、课程、成绩等课程选修学生mn成绩E-R模型如何抽象?如何转换?属性之间函数依赖多值依赖Student(sno,sname,sdept..)Course(cno,cname,ccredit)Sc(sno,cno,grade)S
tudent(sno,sname,sdept,cno,cname,ccredit,grade)实体之间的关系姓名学号关系模式的分解(依赖保持、无损连接)现实世界关系模型RelationalDatabaseDesign联系属性的表示方法课程选修学生mn成绩EntitySet->RelationR
elation:Beers(name,manf)BeersnamemanfRelationship->RelationDrinkersBeersLikesLikes(drinker,beer)FavoriteFavorite(drinker,be
er)MarriedhusbandwifeMarried(husband,wife)nameaddrnamemanfBuddies12Buddies(name1,name2)PitfallsinRelationa
lDatabaseDesignRelationaldatabasedesignrequiresthatwefinda“good”collectionofrelationschemas.AbaddesignmayleadtoRepetitionofInformation.Ina
bilitytorepresentcertaininformation.DesignGoals:AvoidredundantdataEnsurethatrelationshipsamongattributesarereprese
ntedFirstNormalFormDomainisatomicifitselementsareconsideredtobeindivisibleunitsExamplesofnon-atomicdomains:Setofnames,composite
attributesIdentificationnumberslikeCS101thatcanbebrokenupintopartsArelationalschemaRisinfirstnormalformifthedomainsofallattributes
ofRareatomicNon-atomicvaluescomplicatestorageandencourageredundant(repeated)storageofdataE.g.Setofaccountsstor
edwitheachFirstNormalForm(Contd.)Atomicityisactuallyapropertyofhowtheelementsofthedomainareused.E.g.Str
ingswouldnormallybeconsideredindivisibleSupposethatstudentsaregivenrollnumberswhicharestringsoftheformCS0012orEE11
27Ifthefirsttwocharactersareextractedtofindthedepartment,thedomainofrollnumbersisnotatomic.Doingsoisabadidea:leadstoencodingofinformationinapplica
tionprogramratherthaninthedatabase.一、概念回顾关系:描述实体、属性、实体间的联系。从形式上看,它是一张二维表,是所涉及属性的笛卡尔积的一个子集。关系模式:用来定义关系。关系数据库:基于关系模型的数据库,利用关系来描述现实世界。从
形式上看,它由一组关系组成。关系数据库的模式:定义这组关系的关系模式的全体。二、关系模式的形式化定义关系模式由五部分组成,即它是一个五元组:R(U,D,DOM,F)R:关系名U:组成该关系的属性名集合D:属性组U中属性所来
自的域DOM:属性向域的映象集合F:属性间数据的依赖关系集合三、什么是数据依赖1.完整性约束的表现形式限定属性取值范围:例如学生成绩必须在0-100之间定义属性值间的相互关连(主要体现于值的相等与否),这就是数据依赖,它是数据库模式设计的关键什么是数据依赖(续)2.数据依赖是通过一个关系中属
性间值的相等与否体现出来的数据间的相互关系是现实世界属性间相互联系的抽象是数据内在的性质是语义的体现什么是数据依赖(续)3.数据依赖的类型函数依赖(FunctionalDependency,简记为FD)多值依赖(Multi
valuedDependency,简记为MVD)其他四、关系模式的简化表示●关系模式R(U,D,DOM,F)简化为一个三元组:R(U,F)●当且仅当U上的一个关系r满足F时,r称为关系模式R(U,F)的一个关系五、数据
依赖对关系模式的影响例:描述学校的数据库:学生的学号(Sno)、所在系(Sdept)系主任姓名(Mname)、课程名(Cname)成绩(Grade)单一的关系模式:Student<U、F>U={Sno,Sdept,Mname,Cname,Grade}数据依赖对关系模式
的影响(续)学校数据库的语义:⒈一个系有若干学生,一个学生只属于一个系;⒉一个系只有一名主任;⒊一个学生可以选修多门课程,每门课程有若干学生选修;⒋每个学生所学的每门课程都有一个成绩。数据依赖对关系模式的影响(续)属
性组U上的一组函数依赖F:F={Sno→Sdept,Sdept→Mname,(Sno,Cname)→Grade}SnoCnameSdeptMnameGrade关系模式Student<U,F>中存在的问
题⒈数据冗余太大浪费大量的存储空间例:每一个系主任的姓名重复出现⒉更新异常(UpdateAnomalies)数据冗余,更新数据时,维护数据完整性代价大。例:某系更换系主任后,系统必须修改与该系学生有关的每一个元组关系模式Stu
dent<U,F>中存在的问题⒊插入异常(InsertionAnomalies)该插的数据插不进去例,如果一个系刚成立,尚无学生,我们就无法把这个系及其系主任的信息存入数据库。⒋删除异常(DeletionAnomalies)不
该删除的数据不得不删例,如果某个系的学生全部毕业了,我们在删除该系学生信息的同时,把这个系及其系主任的信息也丢掉了。数据依赖对关系模式的影响(续)结论:•Student关系模式不是一个好的模式。•“好”的模式:不会发生插入异常、删除异常、更新异常,数据冗余应尽可能少。原因
:由存在于模式中的某些数据依赖引起的解决方法:通过分解关系模式来消除其中不合适的数据依赖。5.2规范化规范化理论正是用来改造关系模式,通过分解关系模式来消除其中不合适的数据依赖,以解决插入异常、删除异常、更新异常和数据冗余问题。5.2.1函数依赖一、函数依赖二、平凡函数依赖与非平凡
函数依赖三、完全函数依赖与部分函数依赖四、传递函数依赖一、函数依赖定义5.1设R(U)是一个属性集U上的关系模式,X和Y是U的子集。若对于R(U)的任意一个可能的关系r,r中不可能存在两个元组在X上的属性值相等,而在Y上的属性值不等,则
称“X函数确定Y”或“Y函数依赖于X”,记作X→Y。X称为这个函数依赖的决定属性集(Determinant)。Y=f(x)说明:1.函数依赖不是指关系模式R的某个或某些关系实例满足的约束条件,而是指R的所有关系实例均要满足的
约束条件。2.函数依赖是语义范畴的概念。只能根据数据的语义来确定函数依赖。例如“姓名→年龄”这个函数依赖只有在不允许有同名人的条件下成立3.数据库设计者可以对现实世界作强制的规定。例如规定不允许同名人出现,函数依赖“姓名→年龄”成立。所插入的
元组必须满足规定的函数依赖,若发现有同名人存在,则拒绝装入该元组。函数依赖(续)例:Student(Sno,Sname,Ssex,Sage,Sdept)假设不允许重名,则有:Sno→Ssex,Sno→Sage,Sno→Sdept,Sno←→Sname,Sname→Ssex,Sname→
SageSname→Sdept但Ssex→Sage若X→Y,并且Y→X,则记为X←→Y。若Y不函数依赖于X,则记为X─→Y。二、平凡函数依赖与非平凡函数依赖在关系模式R(U)中,对于U的子集X和Y,如果X→Y,但YX,则称
X→Y是非平凡的函数依赖若X→Y,但YX,则称X→Y是平凡的函数依赖例:在关系SC(Sno,Cno,Grade)中,非平凡函数依赖:(Sno,Cno)→Grade平凡函数依赖:(Sno,Cno)→Sno(Sno,Cno)→Cno平
凡函数依赖与非平凡函数依赖(续)于任一关系模式,平凡函数依赖都是必然成立的,它不反映新的语义,因此若不特别声明,我们总是讨论非平凡函数依赖。三、完全函数依赖与部分函数依赖定义5.2在关系模式R(U)中,如果X→Y,并且对于X的任何一个真子集X‟,都有X
‟Y,则称Y完全函数依赖于X,记作XfY。若X→Y,但Y不完全函数依赖于X,则称Y部分函数依赖于X,记作XPY。完全函数依赖与部分函数依赖(续)例:在关系SC(Sno,Cno,Grade)中,由于:Sno→Grade,Cno→Grade
,因此:(Sno,Cno)fGrade四、传递函数依赖定义5.3在关系模式R(U)中,如果X→Y,Y→Z,且YX,Y→X,则称Z传递函数依赖于X。注:如果Y→X,即X←→Y,则Z直接依赖于X。例:在关系Std(Sno,Sdept,Mname)中,有:Sno→Sde
pt,Sdept→MnameMname传递函数依赖于Sno5.2.2码定义5.4设K为关系模式R<U,F>中的属性或属性组合。若KfU,则K称为R的一个侯选码(CandidateKey)。若关系模式R有多个候选码,则选定其中的一个做为主码(Primar
ykey)。主属性与非主属性ALLKEY外部码定义5.5关系模式R中属性或属性组X并非R的码,但X是另一个关系模式的码,则称X是R的外部码(Foreignkey)也称外码主码又和外部码一起提供了表示关系间联系的手段。5.2.3范式范式是符合某一种级别的关系模式的集合。关系数据
库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。范式的种类:第一范式(1NF)第二范式(2NF)第三范式(3NF)BC范式(BCNF)第四范式(4NF)第五范式(5NF)5.2.3范式各种范式之间存在联系:某一关系模式R为第n范式,可简记为R∈nNF。NF5NF4BCNF
NF3NF2NF15.2.42NF1NF的定义如果一个关系模式R的所有属性都是不可分的基本数据项,则R∈1NF。第一范式是对关系模式的最起码的要求。不满足第一范式的数据库模式不能称为关系数据库。但是满足
第一范式的关系模式并不一定是一个好的关系模式。2NF例:关系模式SLC(Sno,Sdept,Sloc,Cno,Grade)Sloc为学生住处,假设每个系的学生住在同一个地方。函数依赖包括:(Sno,Cno)fGradeSno→Sdept(Sno,Cn
o)PSdeptSno→Sloc(Sno,Cno)PSlocSdept→Sloc2NFSLC的码为(Sno,Cno)SLC满足第一范式。非主属性Sdept和Sloc部分函数依赖于码(Sno,Cno)SnoCnoGrade
SdeptSlocSLCSLC不是一个好的关系模式(1)插入异常假设Sno=95102,Sdept=IS,Sloc=N的学生还未选课,因课程号是主属性,因此该学生的信息无法插入SLC。(2)删除异常假定某个学生本来只选修了3号课程这一门课。现在因身体不适,他连3号课
程也不选修了。因课程号是主属性,此操作将导致该学生信息的整个元组都要删除。SLC不是一个好的关系模式(3)数据冗余度大如果一个学生选修了10门课程,那么他的Sdept和Sloc值就要重复存储了10次。(4)修改复杂例如学生转系,在修改此学生元
组的Sdept值的同时,还可能需要修改住处(Sloc)。如果这个学生选修了K门课,则必须无遗漏地修改K个元组中全部Sdept、Sloc信息。2NF原因Sdept、Sloc部分函数依赖于码。解决方法SLC分解为两个关系模式,以消
除这些部分函数依赖SC(Sno,Cno,Grade)SL(Sno,Sdept,Sloc)2NFSLC的码为(Sno,Cno)SLC满足第一范式。非主属性Sdept和Sloc部分函数依赖于码(Sno,Cno)SnoCnoGradeSdeptSlocSLC2NF函数依赖图:SnoC
noGradeSCSLSnoSdeptSloc2NF2NF的定义定义5.6若关系模式R∈1NF,并且每一个非主属性都完全函数依赖于R的码,则R∈2NF。例:SLC(Sno,Sdept,Sloc,Cno,Grade)∈1NFSLC(Sno,Sdept,Sloc,Cno,Grade)∈2N
FSC(Sno,Cno,Grade)∈2NFSL(Sno,Sdept,Sloc)∈2NF第二范式(续)采用投影分解法将一个1NF的关系分解为多个2NF的关系,可以在一定程度上减轻原1NF关系中存在的插入异常、删除异常、数据冗余度大、修改复杂等问题。将一个1NF关系分解为多个2NF的关
系,并不能完全消除关系模式中的各种异常情况和数据冗余。5.2.53NF例:2NF关系模式SL(Sno,Sdept,Sloc)中函数依赖:Sno→SdeptSdept→SlocSno→SlocSloc传递函数依赖于Sno,即SL中存在非主属性对
码的传递函数依赖。3NF函数依赖图:SLSnoSdeptSloc3NF解决方法采用投影分解法,把SL分解为两个关系模式,以消除传递函数依赖:SD(Sno,Sdept)DL(Sdept,Sloc)SD的码为Sno,DL的码为Sdept。3NFSD的码
为Sno,DL的码为Sdept。SnoSdeptSDSdeptSlocDL3NF3NF的定义定义5.8关系模式R<U,F>中若不存在这样的码X、属性组Y及非主属性Z(ZY),使得X→Y,Y→X,Y→Z,
成立,则称R<U,F>∈3NF。例,SL(Sno,Sdept,Sloc)∈2NFSL(Sno,Sdept,Sloc)∈3NFSD(Sno,Sdept)∈3NFDL(Sdept,Sloc)∈3NF3NF若R∈3NF,则R的每一个非主属性既不部分函数依赖于候选码也不传递函数依赖
于候选码。如果R∈3NF,则R也是2NF。采用投影分解法将一个2NF的关系分解为多个3NF的关系,可以在一定程度上解决原2NF关系中存在的插入异常、删除异常、数据冗余度大、修改复杂等问题。将一个2NF关系
分解为多个3NF的关系后,并不能完全消除关系模式中的各种异常情况和数据冗余。5.2.6BC范式(BCNF)定义5.9设关系模式R<U,F>∈1NF,如果对于R的每个函数依赖X→Y,若Y不属于X,则X必含有
候选码,那么R∈BCNF。若R∈BCNF每一个决定属性集(因素)都包含(候选)码R中的所有属性(主,非主属性)都完全函数依赖于码R∈3NF(证明)若R∈3NF则R不一定∈BCNFBCNF例:在关系模式STJ(S,T,J)中,S表示学
生,T表示教师,J表示课程。每一教师只教一门课。每门课由若干教师教,某一学生选定某门课,就确定了一个固定的教师。某个学生选修某个教师的课就确定了所选课的名称:(S,J)→T,(S,T)→J,T→J5.2.6BCNFSJTST
JSTJBCNFSTJ∈3NF(S,J)和(S,T)都可以作为候选码S、T、J都是主属性STJ∈BCNFT→J,T是决定属性集,T不是候选码BCNF解决方法:将STJ分解为二个关系模式:SJ(S,J)∈BCNF,TJ(T,J)∈BCNF
没有任何属性对码的部分函数依赖和传递函数依赖SJSTTJTJ3NF与BCNF的关系如果关系模式R∈BCNF,必定有R∈3NF如果R∈3NF,且R只有一个候选码,则R必属于BCNF。BCNF的关系模式所具有的性质⒈所有
非主属性都完全函数依赖于每个候选码⒉所有主属性都完全函数依赖于每个不包含它的候选码⒊没有任何属性完全函数依赖于非码的任何一组属性5.2.5多值依赖与第四范式(4NF)例:学校中某一门课程由多个教师讲授,他们使用相同的一套参考书。关系模式Teaching(
C,T,B)课程C、教师T和参考书B………课程C教员T参考书B物理数学计算数学李勇王军李勇张平张平周峰普通物理学光学原理物理习题集数学分析微分方程高等代数数学分析表5.1普通物理学光学原理物理习题集普通物理学光学原理物理习题集数
学分析微分方程高等代数数学分析微分方程高等代数…李勇李勇李勇王军王军王军李勇李勇李勇张平张平张平…物理物理物理物理物理物理数学数学数学数学数学数学…参考书B教员T课程C用二维表表示Teaching多值依赖与第四范式(续)Teaching∈BCNF:
Teach具有唯一候选码(C,T,B),即全码Teaching模式中存在的问题(1)数据冗余度大:有多少名任课教师,参考书就要存储多少次多值依赖与第四范式(续)(2)插入操作复杂:当某一课程增加一名任课教师时,该课程有多少本参照书,就必须插入多少个元组例如物理课增加一名教师刘关,需
要插入两个元组:(物理,刘关,普通物理学)(物理,刘关,光学原理)多值依赖与第四范式(续)(3)删除操作复杂:某一门课要去掉一本参考书,该课程有多少名教师,就必须删除多少个元组(4)修改操作复杂:某一门课要修改一本参考书,该课程有多
少名教师,就必须修改多少个元组产生原因存在多值依赖一、多值依赖定义5.10设R(U)是一个属性集U上的一个关系模式,X、Y和Z是U的子集,并且Z=U-X-Y,多值依赖X→→Y成立当且仅当对R的任一关系r,r在(X,Z)上的每个值对应一组Y的值,这组值仅仅决定于X
值而与Z值无关例Teaching(C,T,B)对于C的每一个值,T有一组值与之对应,而不论B取何值一、多值依赖在R(U)的任一关系r中,如果存在元组t,s使得t[X]=s[X],那么就必然存在元组w,vr,(w,v可以与s,t相同),使得w[X]=v[X]=t[X],而w[Y]=t[Y]
,w[Z]=s[Z],v[Y]=s[Y],v[Z]=t[Z](即交换s,t元组的Y值所得的两个新元组必在r中),则Y多值依赖于X,记为X→→Y。这里,X,Y是U的子集,Z=U-X-Y。txy1z2sxy2z1wxy1z1vxy2z2多值依赖(续)平凡多值依赖和非平凡的多值
依赖若X→→Y,而Z=φ,则称X→→Y为平凡的多值依赖否则称X→→Y为非平凡的多值依赖多值依赖的性质(1)多值依赖具有对称性若X→→Y,则X→→Z,其中Z=U-X-Y多值依赖的对称性可以用完全二分图直观地表示出来。(2
)多值依赖具有传递性若X→→Y,Y→→Z,则X→→Z-Y多值依赖的对称性XiZi1Zi2…ZimYi1Yi2…Yin多值依赖的对称性物理普通物理学光学原理物理习题集李勇王军多值依赖(续)(3)函数依赖是多值依赖的特殊情况。若X→Y,则X→→Y。(4)若X→→Y,X
→→Z,则X→→YZ。(5)若X→→Y,X→→Z,则X→→Y∩Z。(6)若X→→Y,X→→Z,则X→→Y-Z,X→→Z-Y。多值依赖与函数依赖的区别(1)有效性多值依赖的有效性与属性集的范围有关若
X→→Y在U上成立,则在W(XYWU)上一定成立;反之则不然,即X→→Y在W(WU)上成立,在U上并不一定成立多值依赖的定义中不仅涉及属性组X和Y,而且涉及U中其余属性Z。一般地,在R(U)上若有X→→Y在W(WU)上成立,则称X→→Y为R
(U)的嵌入型多值依赖多值依赖与函数依赖的区别只要在R(U)的任何一个关系r中,元组在X和Y上的值满足定义5.l(函数依赖),则函数依赖X→Y在任何属性集W(XYWU)上成立。多值依赖(续)(2)若函数依赖X→Y在R(U)上成立,则对于
任何Y'Y均有X→Y'成立多值依赖X→→Y若在R(U)上成立,不能断言对于任何Y'Y有X→→Y'成立二、第四范式(4NF)定义5.10关系模式R<U,F>∈1NF,如果对于R的每个非平凡多值依赖X
→→Y(YX),X都含有候选码,则R∈4NF。(X→Y)如果R∈4NF,则R∈BCNF不允许有非平凡且非函数依赖的多值依赖允许的是函数依赖(是非平凡多值依赖)第四范式(续)例:Teach(C,T,B)∈
4NF存在非平凡的多值依赖C→→T,且C不是候选码用投影分解法把Teach分解为如下两个关系模式:CT(C,T)∈4NFCB(C,B)∈4NFC→→T,C→→B是平凡多值依赖5.2规范化5.2.1第一范式(1NF)5.2.2第二范式
(2NF)5.2.3第三范式(3NF)5.2.4BC范式(BCNF)5.2.5多值依赖与第四范式(4NF)5.2.6规范化5.2.6规范化关系数据库的规范化理论是数据库逻辑设计的工具。一个关系只要其分量都是不可分的数据项
,它就是规范化的关系,但这只是最基本的规范化。规范化程度可以有多个不同的级别规范化(续)规范化程度过低的关系不一定能够很好地描述现实世界,可能会存在插入异常、删除异常、修改复杂、数据冗余等问题一个低一级范式
的关系模式,通过模式分解可以转换为若干个高一级范式的关系模式集合,这种过程就叫关系模式的规范化规范化(续)关系模式规范化的基本步骤1NF↓消除非主属性对码的部分函数依赖消除决定属性2NF集非码的非平↓消除非主属性对码的传递函数依赖凡函数依赖3NF↓消
除主属性对码的部分和传递函数依赖BCNF↓消除非平凡且非函数依赖的多值依赖4NF规范化的基本思想消除不合适的数据依赖的各关系模式达到某种程度的“分离”采用“一事一地”的模式设计原则让一个关系描述一个概念、一个实体或者实体间的一种联系。若多于一个概念就把它“分离”出去所谓规范化实质上是
概念的单一化规范化(续)不能说规范化程度越高的关系模式就越好在设计数据库模式结构时,必须对现实世界的实际情况和用户应用需求作进一步分析,确定一个合适的、能够反映现实世界的模式上面的规范化步骤可以在
其中任何一步终止第五章关系数据理论5.1数据依赖5.2规范化5.3数据依赖的公理系统5.4模式的分解5.3数据依赖的公理系统逻辑蕴含定义5.11对于满足一组函数依赖F的关系模式R<U,F>,其任何一个关系r,若函数依赖X→
Y都成立,则称F逻辑蕴含X→YArmstrong公理系统一套推理规则,是模式分解算法的理论基础用途求给定关系模式的码从一组函数依赖求得蕴含的函数依赖1.Armstrong公理系统关系模式R<U,F>来说有以下的推理规则:Al.自反律(Reflexivity):若YXU,则X
→Y为F所蕴含。A2.增广律(Augmentation):若X→Y为F所蕴含,且ZU,则XZ→YZ为F所蕴含。A3.传递律(Transitivity):若X→Y及Y→Z为F所蕴含,则X→Z为F所蕴含。注意:由自反律所得到的函数依赖均是平凡的函数依赖,自反律的使用并不依
赖于F定理5.lArmstrong推理规则是正确的(l)自反律:若YXU,则X→Y为F所蕴含证:设YXU对R<U,F>的任一关系r中的任意两个元组t,s:若t[X]=s[X],由于YX,有t[y]=s[y],所以X→Y成立.自反律得证定理5.l(2)增广律:若X→Y为F
所蕴含,且ZU,则XZ→YZ为F所蕴含。证:设X→Y为F所蕴含,且ZU。设R<U,F>的任一关系r中任意的两个元组t,s;若t[XZ]=s[XZ],则有t[X]=s[X]和t[Z]=s[Z];由X→Y,于是有t[Y]=s[Y],所以t[YZ
]=s[YZ],所以XZ→YZ为F所蕴含.增广律得证。定理5.l(3)传递律:若X→Y及Y→Z为F所蕴含,则X→Z为F所蕴含。证:设X→Y及Y→Z为F所蕴含。对R<U,F>的任一关系r中的任意两个元组t,s。若t[X]=s[X],由于
X→Y,有t[Y]=s[Y];再由Y→Z,有t[Z]=s[Z],所以X→Z为F所蕴含.传递律得证。2.导出规则1.根据A1,A2,A3这三条推理规则可以得到下面三条推理规则:合并规则:由X→Y,X→Z,有X→YZ。(A2,A3)伪传递规则:由X→Y,WY→Z,有XW→Z。(A2
,A3)分解规则:由X→Y及ZY,有X→Z。(A1,A3)导出规则2.根据合并规则和分解规则,可得引理5.1引理5.lX→A1A2…Ak成立的充分必要条件是X→Ai成立(i=l,2,…,k)。3.函数依赖闭包定义5.l2在关系模式R<U,F>中为F所逻辑蕴含的函数依赖的全体叫作F的闭
包,记为F+。定义5.13设F为属性集U上的一组函数依赖,XU,XF+={A|X→A能由F根据Armstrong公理导出},XF+称为属性集X关于函数依赖集F的闭包F的闭包F={XY,YZ},F+计算是
NP完全问题,XA1A2...AnF+={Xφ,Yφ,Zφ,XYφ,XZφ,YZφ,XYZφ,XX,YY,ZZ,XYX,XZX,YZY,XYZX,XY,YZ,XYY,XZY,YZZ,XYZY,XZ,YYZ,XYZ,XZZ,YZYZ,XYZZ,XXY,XYXY,XZXY,
XYZXY,XXZ,XYYZ,XZXZ,XYZYZXYZ,XYXZ,XZXY,XYZXZ,XZYZ,XYXYZ,XZXYZ,XYZXYZ}关于闭包的引理引理5.2设F为属性集U上的一组函数依赖,X,YU,X→Y能由F根据A
rmstrong公理导出的充分必要条件是YXF+用途将判定X→Y是否能由F根据Armstrong公理导出的问题,就转化为求出XF+,判定Y是否为XF+的子集的问题求闭包的算法算法5.l求属性集X(XU)关于U上的函数依赖集F的闭包XF+输入:X,F输出:X
F+步骤:(1)令X(0)=X,i=0(2)求B,这里B={A|(V)(W)(V→WF∧VX(i)∧AW)};(3)X(i+1)=B∪X(i)算法5.l(4)判断X(i+1)=X(i)吗?(5)若相等或X(i)=U,则X(i)就是XF+,算法终止。(6)若否,则i=i+l,返回第(2)
步。对于算法5.l,令ai=|X(i)|,{ai}形成一个步长大于1的严格递增的序列,序列的上界是|U|,因此该算法最多|U|-|X|次循环就会终止。DefineXF+=closureofX=setofattributesfunctionallydeterminedby
XBasis:XF+:=XInduction:IfYXF+,andYAisagivenFD,thenaddAtoXF+EndwhenXF+cannotbechanged.AlgorithmyX+NewX+AU={A
,B,C,D};F={AB,BCD};A+=AB.C+=C.(AC)+=ABCD.ExampleACBExampleACDBU={A,B,C,D};AB,BCD.(AC)+=ABCD.函数依赖闭包[例1]已知关系模式R<U,F>,其中U={A,B
,C,D,E};F={AB→C,B→D,C→E,EC→B,AC→B}。求(AB)F+。解设X(0)=AB;(1)计算X(1):逐一的扫描F集合中各个函数依赖,找左部为A,B或AB的函数依赖。得到两个:AB→C,B→D。于是X(1)=AB∪CD=ABCD。函数依赖闭包
(2)因为X(0)≠X(1),所以再找出左部为ABCD子集的那些函数依赖,又得到AB→C,B→D,C→E,AC→B,于是X(2)=X(1)∪BCDE=ABCDE。(3)因为X(2)=U,算法终止所以(AB)F+=AB
CDE。4.Armstrong公理系统的有效性与完备性建立公理系统体系目的:从已知的f推导出未知的f明确:1.公理系统推导出来的f正确?2.F+中的每一个f都能推导出来?/f不能由F导出,f∈F+FF+f4.Armstrong公理系统的有效性与完备性有效性:由F出发根据Ar
mstrong公理推导出来的每一个函数依赖一定在F+中/*Armstrong正确完备性:F+中的每一个函数依赖,必定可以由F出发根据Armstrong公理推导出来/*Armstrong公理够用,完全完备性:所有不能用Armstrong公理推导
出来f,都不为真若f不能用Armstrong公理推导出来,f∈F+有效性与完备性的证明证明:1.有效性可由定理5.l得证2.完备性只需证明逆否命题:若函数依赖X→Y不能由F从Armstrong公理导出,那
么它必然不为F所蕴含分三步证明:有效性与完备性的证明(1)引理:若V→W成立,且VXF+,则WXF+证因为VXF+,所以有X→V成立;因为X→V,V→W,于是X→W成立所以WXF+(2)/*若f不能用Armstrong公理推导出来,f∈F+/*
若存在r,F+中的全部函数依赖在r上成立。/*而不能用Armstrong公理推导出来的f,在r上不成立。构造一张二维表r,它由下列两个元组构成,可以证明r必是R(U,F)的一个关系,即F+中的全部函数依赖在r上成立。Armstr
ong公理系统的有效性与完备性(续)XF+U-XF+11......100......011......111......1若r不是R<U,F>的关系,则必由于F中有函数依赖V→W在r上不成立所致。由r的构成可知,V必定是XF+的子集,而W不是XF+的子集,可是由第
(1)步,WXF+,矛盾。所以r必是R<U,F>的一个关系。Armstrong公理系统的有效性与完备性(续)(3))/*若f不能用Armstrong公理推导出来,f∈F+/*而不能用Armstrong公理推导出来的f,在r上不成立。若X→Y不能由F从
Armstrong公理导出,则Y不是XF+的子集。(引理5.2)因此必有Y的子集Y’满足Y’U-XF+,则X→Y在r中不成立,即X→Y必不为R<U,F>蕴含/*因为F+中的全部函数依赖在r上成立。Ar
mstrong公理系统的有效性与完备性(续)Armstrong公理的完备性及有效性说明:“蕴含”==“导出”等价的概念F+==由F出发借助Armstrong公理导出的函数依赖的集合5.函数依赖集等价定义5.14如果G+=F+,就说函数依赖集F覆盖G(F是G的覆盖,或G是F的
覆盖),或F与G等价。函数依赖集等价的充要条件引理5.3F+=G+的充分必要条件是FG+,和GF+证:必要性显然,只证充分性。(1)若FG+,则XF+XG++。(2)任取X→YF+则有YXF+XG++。所以X→Y(G+)+=G+。即F+G+。(3)同理可证G+F+,所以F+
=G+。函数依赖集等价要判定FG+,只须逐一对F中的函数依赖X→Y,考察Y是否属于XG++就行了。因此引理5.3给出了判断两个函数依赖集等价的可行算法。6.最小依赖集定义5.15如果函数依赖集F满足下列条件,则称F为一个极小函数依赖集。亦称为最小依赖集或最
小覆盖。(1)F中任一函数依赖的右部仅含有一个属性。(2)F中不存在这样的函数依赖X→A,使得F与F-{X→A}等价。(3)F中不存在这样的函数依赖X→A,X有真子集Z使得F-{X→A}∪{Z→A}与F等价。最小依赖集[例2]对于5.l节中的关系
模式S<U,F>,其中:U={SNO,SDEPT,MN,CNAME,G},F={SNO→SDEPT,SDEPT→MN,(SNO,CNAME)→G}设F’={SNO→SDEPT,SNO→MN,SDEPT→MN,(SNO,
CNAME)→G,(SNO,SDEPT)→SDEPT}F是最小覆盖,而F’不是。因为:F’-{SNO→MN}与F‟等价F’-{(SNO,SDEPT)→SDEPT}也与F‟等价F’-{(SNO,SDEPT)→SDEPT}
∪{SNO→SDEPT}也与F‟等价7.极小化过程定理5.3每一个函数依赖集F均等价于一个极小函数依赖集Fm。此Fm称为F的最小依赖集证:构造性证明,依据定义分三步对F进行“极小化处理”,找出F的一个最小依赖集。(1)逐一检查F中各函数
依赖FDi:X→Y,若Y=A1A2…Ak,k>2,则用{X→Aj|j=1,2,…,k}来取代X→Y。引理5.1保证了F变换前后的等价性。极小化过程(2)逐一检查F中各函数依赖FDi:X→A,令G=F-{X→A},若AXG+,则从F中
去掉此函数依赖。由于F与G=F-{X→A}等价的充要条件是AXG+因此F变换前后是等价的。极小化过程(3)逐一取出F中各函数依赖FDi:X→A,设X=B1B2…Bm,逐一考查Bi(i=l,2,…,m),
若A(X-Bi)F+,则以X-Bi取代X。由于F与F-{X→A}∪{Z→A}等价的充要条件是AZF+,其中Z=X-Bi因此F变换前后是等价的。极小化过程由定义,最后剩下的F就一定是极小依赖集。因为对F的每
一次“改造”都保证了改造前后的两个函数依赖集等价,因此剩下的F与原来的F等价。证毕定理5.3的证明过程也是求F极小依赖集的过程极小化过程[例3]F={A→B,B→A,B→C,A→C,C→A}Fm1、Fm2都是F的最小依赖集:Fm1={A→B,B→C,C→A}Fm2={A→B,B→A,A→C,
C→A}F的最小依赖集Fm不一定是唯一的它与对各函数依赖FDi及X→A中X各属性的处置顺序有关极小化过程极小化过程(定理5.3的证明)也是检验F是否为极小依赖集的一个算法若改造后的F与原来的F相同,说明F本身就是一个最小依赖集极小化
过程在R<U,F>中可以用与F等价的依赖集G来取代F原因:两个关系模式R1<U,F>,R2<U,G>,如果F与G等价,那么R1的关系一定是R2的关系。反过来,R2的关系也一定是R1的关系。第五章关系数据理论5.1数据依赖5.2规范化5.3数据依赖的公理系统5.4模式的分
解5.4模式的分解把低一级的关系模式分解为若干个高一级的关系模式的方法并不是唯一的只有能够保证分解后的关系模式与原关系模式等价,分解方法才有意义关系模式分解的标准三种模式分解的等价定义⒈分解具有无损连接性⒉分解要保持函数依赖⒊分解既要保持函数依赖,又要具有无
损连接性模式的分解(续)定义5.16关系模式R<U,F>的一个分解:ρ={R1<U1,F1>,R2<U2,F2>,…,Rn<Un,Fn>}U=U1∪U2∪…∪Un,且不存在UiUj,Fi为F在Ui上的投影定义5.17函数依赖集合{X→Y|X→YF+∧XYUi}的一个覆盖Fi叫作F在属性U
i上的投影模式的分解(续)例:SL(Sno,Sdept,Sloc)F={Sno→Sdept,Sdept→Sloc,Sno→Sloc}SL∈2NF存在插入异常、删除异常、冗余度大和修改复杂等问题分解方法可以有多种模式的分解(续)SL──────────────────Sno
SdeptSloc──────────────────95001CSA95002ISB95003MAC95004ISB95005PHB──────────────────模式的分解(续)1.SL分解为下面三个关系模式
:SN(Sno)SD(Sdept)SO(Sloc)分解后的关系为:SN──────SD──────SO──────SnoSdeptSloc──────────────────95001CSA95002ISB95003MAC95004PH
─────95005────────────模式的分解(续)分解后的数据库丢失了许多信息例如无法查询95001学生所在系或所在宿舍。如果分解后的关系可以通过自然连接恢复为原来的关系,那么这种分解就没有丢失信息模式的分解(续)2
.SL分解为下面二个关系模式:NL(Sno,Sloc)DL(Sdept,Sloc)分解后的关系为:NL────────────DL────────────SnoSlocSdeptSloc────────────────────────95001ACSA95
002BISB95003CMAC95004BPHB95005B──────────────────────模式的分解(续)NLDL─────────────SnoSlocSdept─────────────95001ACS95002BIS95002BPH95003CMA95004BIS95004B
PH95005BIS95005BPH模式的分解(续)NLDL比原来的SL关系多了3个元组无法知道95002、95004、95005究竟是哪个系的学生元组增加了,信息丢失了第三种分解方法3.将SL分解为下面二个关系模式:ND(Sno,Sdept)
NL(Sno,Sloc)分解后的关系为:模式的分解(续)ND────────────NL──────────SnoSdeptSnoSloc──────────────────────95001CS95001A95002IS95002B95003MA
95003C95004IS95004B95005PH95005B───────────────────────模式的分解(续)NDNL──────────────SnoSdeptSloc──────────────95001C
SA95002ISB95003MAC95004CSA95005PHB──────────────与SL关系一样,因此没有丢失信息具有无损连接性的模式分解关系模式R<U,F>的一个分解ρ={R1<U1,F1>,R2<U2,F2>,…,Rn<Un,Fn>}若R与R1、R2、…、Rn自然连接
的结果相等,则称关系模式R的这个分解ρ具有无损连接性(Losslessjoin)具有无损连接性的分解保证不丢失信息无损连接性不一定能解决插入异常、删除异常、修改复杂、数据冗余等问题模式的分解(续)第三种分解方法具有无损连接性
问题:这种分解方法没有保持原关系中的函数依赖SL中的函数依赖Sdept→Sloc没有投影到关系模式ND、NL上保持函数依赖的模式分解设关系模式R<U,F>被分解为若干个关系模式R1<U1,F1>,R2<U2
,F2>,…,Rn<Un,Fn>(其中U=U1∪U2∪…∪Un,且不存在UiUj,Fi为F在Ui上的投影),若F所逻辑蕴含的函数依赖一定也由分解得到的某个关系模式中的函数依赖Fi所逻辑蕴含,则称关系模式R的这个分解是保持函数依赖的(Preservedependency)。第四种
分解方法将SL分解为下面二个关系模式:ND(Sno,Sdept)DL(Sdept,Sloc)这种分解方法就保持了函数依赖。模式的分解(续)如果一个分解具有无损连接性,则它能够保证不丢失信息。如果一个分解保持了函数依赖,则它可以减轻或解决各种异常情况。分
解具有无损连接性和分解保持函数依赖是两个互相独立的标准。具有无损连接性的分解不一定能够保持函数依赖。同样,保持函数依赖的分解也不一定具有无损连接性。模式的分解(续)第一种分解方法既不具有无损连接性,也未保持函数依赖,它不是原关系模式的一个
等价分解第二种分解方法保持了函数依赖,但不具有无损连接性第三种分解方法具有无损连接性,但未持函数依赖第四种分解方法既具有无损连接性,又保持了函数依赖分解算法算法5.2判别一个分解的无损连接性算法5.3(合成法)转换为3NF的保持函数依
赖的分解。算法5.4转换为3NF既有无损连接性又保持函数依赖的分解算法5.5转换为BCNF的无损连接分解(分解法)算法5.6达到4NF的具有无损连接性的分解P196图5.11分解算法解P196图5.11若要求分解具有无损连接性,那么模式分解
一定能够达到4NF。若要求分解保持函数依赖,那么模式分解一定能够达到3NF,但不一定能够达到BCNF。若要求分解既具有无损连接性,又保持函数依赖,则模式分解一定能够达到3NF,但不一定能够达到BCNF。泛关系假设“假设已知一个模式Sφ,它仅由单个关系模式组成,问题是要设计
一个模式SD,它与Sφ„等价’,但在某些方面更好一些”从一个关系模式出发,而不是从一组关系模式出发实行分解“等价”的定义也是一组关系模式与一个关系模式的“等价”小结(续)规范化理论为数据库设计提供了理论的指南和工具也仅仅是指南和工具并不是
规范化程度越高,模式就越好必须结合应用环境和现实世界的具体情况合理地选择数据库模式