图像滤波课件

PPT
  • 阅读 62 次
  • 下载 0 次
  • 页数 74 页
  • 大小 4.324 MB
  • 2022-11-25 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档30.00 元 加入VIP免费下载
此文档由【小橙橙】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
图像滤波课件
可在后台配置第一页与第二页中间广告代码
图像滤波课件
可在后台配置第二页与第三页中间广告代码
图像滤波课件
可在后台配置第三页与第四页中间广告代码
图像滤波课件
图像滤波课件
还剩10页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 74
  • 收藏
  • 违规举报
  • © 版权认领
下载文档30.00 元 加入VIP免费下载
文本内容

【文档说明】图像滤波课件.ppt,共(74)页,4.324 MB,由小橙橙上传

转载请保留链接:https://www.ichengzhen.cn/view-50576.html

以下为本文档部分文字说明:

1遥感数字图像处理林金堂闽江学院地理科学系2第7章图像滤波3第7章图像滤波7.1图像平滑7.2图像锐化47.1图像平滑图像在获取和传输的过程中,受传感器和大气等因素的影响会存在噪声。在图像上,这些噪声表现为一些亮点、或亮度过大的区域。为了抑制噪声、改善图像

质量所做的处理称为图像平滑。57.1图像平滑7.1.1图像噪声7.1.2均值滤波7.1.3中值滤波67.1图像平滑7.1.1图像噪声1.图像噪声种类•图像噪声按其产生的原因可分为外部噪声和内部噪声。外部噪声

是指图像处理系统外部产生的噪声,如天体放电干扰、电磁波从电源线窜入系统等产生的噪声。内部噪声是指系统内部产生的噪声。•从统计理论观点可分为平稳和非平稳噪声。凡是统计特征不随时间变化的噪声称为平稳噪声;统计特征随时间变化的噪声称为非平稳噪声。•从噪声幅度分布形态可分为高斯型、瑞利型噪声。

•按频谱分布形状进行分类,均匀分布的噪声称为白噪声。•按产生过程进行分类噪声可分为量化噪声和椒盐噪声等。77.1图像平滑7.1.1图像噪声2.噪声特征单波段的图像f(x,y)可看做是二维亮度分布,噪声可看做是对亮度的干扰,用n(x,y)来表示。噪声是随机性的,因而需用随机过程来描述,即

要求知道其分布函数或密度函数。但在许多情况下这些函数很难测出或描述,甚至不可能得到,所以常用统计特征来描述噪声如均值、方差(交流功率)、总功率等。87.1图像平滑7.1.1图像噪声3.噪声的模型•按噪声对图像的影响可分为加性噪声模型和乘性噪声模型两大类。设f(x,y

)为理想图像,n(x,y)为噪声,输出图像为g(x,y)。对于加性噪声而言,有g(x,y)=f(x,y)+n(x,y)•加性噪声通常表现为高斯噪声或脉冲噪声。•对于乘性噪声而言,n(x,y)和图像光强大小相关,随亮度的大小变化而变化。即有g(x,y

)=f(x,y)[1+n(x,y)]=f(x,y)+f(x,y)n(x,y)•乘性噪声或许是图像中最普遍的噪声,其模型和分析计算都比较复杂。通常总是假定信号和噪声互相独立,然后通过对图像做对数变换,将乘性噪声当做加性噪声来处理。97.1图像平滑7.1.1图像

噪声4.遥感图像中常见的噪声•1)高斯噪声噪声的像素值分布可以使用高斯概率密度来描述(服从正态分布),在数学上的容易处理。0均值的高斯噪声指每个像素值中附加了0均值的具有高斯概率密度的函数值。通常假设图像含有高

斯噪声。高斯噪声(均值=0,方差=0.05)107.1图像平滑7.1.1图像噪声4.遥感图像中常见的噪声•2)脉冲噪声(椒盐噪声)脉冲噪声随机改变一些像素值,在二值图像上表现为使一些像素点变白(用b表示),一些像素点变黑(用a表示)。脉冲噪声的概率密度函数由下式给出:椒盐噪声117.1图像

平滑7.1.1图像噪声4.遥感图像中常见的噪声•3)周期噪声图像中的周期噪声是获取过程中受成像设备影响产生的。这是唯一的一种空间依赖型噪声。周期噪声可通过频率域滤波进行压抑。127.1图像平滑模板操作和卷积运算模板操作是数字图像处理中常用的一

种运算方式,图像的平滑、锐化以及后面将要讨论的细化、边缘检测等都要用到模板操作。例如,有一种常见的平滑算法是将原图中的一个像素的灰度值和它周围邻近8个像素的灰度值相加,然后将求得的平均值作为新图像中该像素的灰度值。可用如下方法来表

示该操作:11111111191*137.1图像平滑上式有点类似于矩阵,通常称之为模板(Template),带星号的数据表示该元素为中心元素,即这个元素是将要处理的元素。如果模板为则该操作的含义是:将原图中一个像素的灰度值和

它右下相邻近的8个像素值相加,然后将求得的平均值作为新图像中该像素的灰度值。11111111191*147.1图像平滑模板操作实现了一种邻域运算,即某个像素点的结果不仅和本像素灰度有关,而且和其邻域点的值有关。模板运算的数学含义是卷积(或互相关)运算

。卷积是一种用途很广的算法,可用卷积来完成各种处理变换。157.1图像平滑卷积运算示意图P13×3邻域输入图像(行,列)*P5的新值加权和计算:H1·P1+P2P3P4P5P6P7P8P93×3卷积核H1H4H7

H2H5H8H3H6H9H2·P2+H3·P3+H4·P4+H5·P5+H6·P6+H7·P7+H8·P8+H9·P9+167.1图像平滑卷积运算中的卷积核就是模板运算中的模板,卷积就是作加权求和的过程。邻域中的每个像素(假定邻域为3×3大小,卷积核大小与邻

域相同),分别与卷积核中的每一个元素相乘,乘积求和所得结果即为中心像素的新值。卷积核中的元素称作加权系数(亦称为卷积系数),卷积核中的系数大小及排列顺序,决定了对图像进行区处理的类型。改变卷积核中的加权系数,会影响到总和

的数值与符号,从而影响到所求像素的新值。177.1图像平滑在模板或卷积的加权运算中,还存在一些具体问题需要解决:首先是图像边界问题,当在图像上移动模板(卷积核)至图像的边界时,在原图像中找不到与卷积核中的加权系数相对应的9个

像素,即卷积核悬挂在图像缓冲区的边界上,这种现象在图像的上下左右四个边界上均会出现。例如,当模板为11111111191*187.1图像平滑设原图像为经过模板操作后的图像为

44444333332222211111333222“-”表示无法进行模板操作的像素点。解决这个问题可以采用两种简单方法:一种方法是忽略图像边界数据,另一种方法是在图像四周复制原图像边界像素的值,从

而使卷积核悬挂在图像四周时可以进行正常的计其次,是计算出来的像素值的动态范围问题,对此可简单地将其值置为0或255即可。197.1图像平滑7.1.2均值滤波均值滤波是最常用的线性低通滤波器,它均等地对待邻域中的每个像素。对于每个像素,取邻域像素值的平均作为该像素

的新值。从频率域的角度看,相当于进行了低通滤波。均值滤波也叫邻域平均法。均值滤波的思想:通过一点和邻域内像素点求平均来去除突变的像素点,从而滤掉一定的噪声。均值滤波对高斯噪声比较有效。常用的邻域有4-邻域和8-邻域。207.1图像平滑7

.1.2均值滤波假定窗口大小为n*m,则对于图像f的任意一个像素(x,y),均值滤波的计算公式为:217.1图像平滑7.1.2均值滤波对于3*3的窗口,对应的模板h(k,l)如图(a)所示。为了避免中心像素值过高影响平均

值升高,在运算时可不取中心值,用周围的八个像素进行计算(图(b))。1111111111911110111118(a)(b)227.1图像平滑7.1.2均值滤波(m-1,n-1)(m-1,n)(m-1,n+1)(m,n-1)(m,n)(m,n+1)(m+1,n

-1)(m+1,n)(m+1,n+1)例如,对图像采用3×3的均值滤波,对于像素(m,n),其邻域像素如下:则有:),(),(91jnimfnmgZiZj237.1图像平滑7.1.2均值滤波例如,用3×3Box模板对一幅数

字图像处理结果,如下图所示(计算结果按四舍五入进行了调整,对边界像素不进行处理)。121431223457689576885678912143134445456956788567893×3Box模板平滑处理示意图247.1图像平滑7.1.2均值滤波主要优点:均值滤波算法简单,计算

速度快缺点:降低噪声的同时造成图像模糊,特别是对图像的边缘和细节削弱很多;随着邻域范围的扩大,去噪能力增强的同时模糊程度越加严重。左图,电视截屏图像,受电视扫描条带的影响。右图,均值滤波处理后的结果25

7.1图像平滑7.1.2均值滤波主要优点:均值滤波算法简单,计算速度快缺点:降低噪声的同时造成图像模糊,特别是对图像的边缘和细节削弱很多;随着邻域范围的扩大,去噪能力增强的同时模糊程度越加严重。(a)原始图像(b)邻域平均后的结果267.1图像平滑7.1.2均

值滤波a.大小为500×500象素的原图像b-f.用大小为3,5,9,15,35的方形均值滤波模板平滑的结果277.1图像平滑7.1.2均值滤波用各种尺寸的模版平滑图像287.1图像平滑7.1.2均值滤波均值滤波的改进:

为了保留图像的边缘和细节信息,可对上述算法进行改进,引入阈值T。即将原图像灰度值f(x,y)与滤波结果值g(x,y)之差的绝对值与选定的阈值进行比较,根据比较结果确定像素(x,y)的最后值。当差异小于阈值时取原值f,差异大于阈值时取新值g。其表达式

为:297.1图像平滑7.1.2均值滤波(a)原图像(b)对(a)加椒盐噪声的图像(c)3×3邻域平滑(d)5×5邻域平滑(e)3×3超限像素平滑(T=64)(f)5×5超限像素平滑(T=48)307.1图像平滑7.1.2均值滤波加权平均模板法:GaussianFilter:

1212*42121161数学含义:用不同的系数乘以像素,权值不同,像素的重要性不同——该方法可以减小平滑处理中的模糊现象。317.1图像平滑7.1.3中值滤波中值滤波是一种最常用的非线性平滑滤波器,它将窗口内的所有像素值按大小排

序后,取中值作为中心像素的新值。窗口的行列数一般取奇数。由于用中值替代了平均值,中值滤波在抑制噪声的同时能够有效地保留边缘,减少模糊。327.1图像平滑7.1.3中值滤波中值滤波原理中值滤波就是用一个

奇数点的移动窗口,将窗口中心点的值用窗口内各点的中值代替。假设窗口内有五点,其值为80、90、200、110和120,那么此窗口内各点的中值即为110。设有一个一维序列f1,f2,…,fn,取窗口长度(点数)为m(m为奇数),对其进行中值滤波,就是从

输入序列中相继抽出m个数fi-v,…,fi-1,fi,fi+1,…,fi+v(其中fi为窗口中心点值,v=(m-1)/2),再将这m个点按其数值大小排序,取其序号为中心点的那个数作为滤波输出。用数学公

式表示为21,,,,,mvNifffMedyviivii337.1图像平滑7.1.3中值滤波优点:对椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。缺点:对点、线等细节较多的图像却不太合适。二维中值滤波可由下式

表示:}{ijAijfMedy式中:A为窗口;{fij}为二维数据序列。347.1图像平滑7.1.3中值滤波中值滤波器的窗口形状可以有多种,如线状、方形、十字形、圆形、菱形等(见图)。(a)(b)(c)(d)(e)(f)形状的选择:对于有缓变的较长轮廓

线物体的图像,采用方形或圆形窗口为宜。对于包含有尖顶物体的图像,用十字形窗口。窗口大小的选择:则以不超过图像中最小有效物体的尺寸为宜。357.1图像平滑7.1.3中值滤波图(a)为原图像;图(b)为加椒盐噪声的图像;图(c)和图(d)分别为3×3、5×5模板进行中值滤波的结果。可见中值滤波法

能有效削弱椒盐噪声,且比邻域、超限像素平均法更有效。367.1图像平滑7.1.3中值滤波混有椒盐噪宙的IKNOS图像中值滤波后的图像均值滤波后的图像377.1图像平滑7.1.3中值滤波原始信号均值滤波中值滤波(a)阶跃;(b)斜坡;(c)单脉冲;(d)双脉冲;(e)三脉冲;(f)三角波(a)(

b)(c)(d)(e)(f)387.1图像平滑7.1.3中值滤波397.1图像平滑7.1.3中值滤波407.1图像平滑7.1.3中值滤波1)对某些输入信号中值滤波的不变性对某些特定的输入信号,如在窗口内单调增加或单调减少的序列,中值滤波输出信

号仍保持输入信号不变,即:fi-n≤…≤fi≤…≤fi+n或fi-n≥…≥fi≥…≥fi+n,则{yi}={fi}。417.1图像平滑7.1.3中值滤波中值滤波不变性示例(a)原始图像(b)中值滤波输出3×3方形窗中值滤波3×3方形窗口中值滤波3×3方形窗口中值滤波111155551111550

5111155551011555511110555111155551115511155111551115500100001000010000100001000000000000000000000000000111111111111555115551155811111111115

551155511855111155811555115551111111111855115551155511111111111111111111111155511555115551111111111555115551155511115

55115551155511111111115551155511555111111111111(a)(b)5555427.1图像平滑7.1.3中值滤波2)中值滤波去噪声性能对于零均值正态分布的噪声输入,中值滤波输出的噪声方差σ2med近似为式中:σ2i为输入噪声功率(方差)

,m为中值滤波窗口长度(点数),为输入噪声均值,为输入噪声密度函数。m)(mf212)(41222mmmfimed437.1图像平滑7.1.3中值滤波而均值滤波的输出噪声方差σ20为可以看出,中值滤波的输出与输入噪声的密度分布有关。对随机噪声的抑制能力

,中值滤波比平均值滤波要差一些。但对脉冲干扰,特别是脉冲宽度小于m/2、相距较远的窄脉冲干扰,中值滤波的效果较好。2201im447.2图像锐化扫描线灰度渐变孤立点细线灰度跃变图像细节的灰度分布特性平坦段为了突出图像中的地物边缘、轮廓或

线状目标,可以采用锐化的方法。锐化提高了边缘与周围像素之间的反差,因此也被称为边缘增强。平滑通过积分过程使得图像边缘模糊,图像锐化则通过微分使图像边缘突出。457.2图像锐化图像锐化的目的:加强图像中物体(景物)的边缘和轮廓及图像细节。边缘

和轮廓一般都位于灰度突变的地方,且突变常常具有任意的方向。111181111467.2图像锐化7.2.1梯度法7.2.2罗伯特梯度7.2.3Prewitt和Sobel梯度7.2.4Lap

lacian算子7.2.5定向检测477.2图像锐化7.2.1梯度法实际上就是微分法。图像函数f(x,y)的梯度定义为一个向量:yfxfyxfG//)],([梯度的两个重要性质是:(1)梯度的方向在函数f(x,y)最大变化率的方向上。(2)梯度的幅度用|G[

f(x,y)]|表示,并由下式算出:2/122)],([yfxfyxfG注:为简便,梯度的幅值简称为梯度,也写成G[f(x,y)]487.2图像锐化7.2.1梯度法从梯度的定义可知,梯度实际上反映了

相邻像素之间灰度的变化率,图像中的边缘,例如河流、湖泊的边界、道路等处灰度的变化率较大,因此在边缘处一定有一较大的梯度值;而大面积的平原、海面灰度变化较小,一定具有较小的梯度值;对于灰度级为常数的区域,梯度值为0。因此,以梯度值替代像素的原灰度值生成梯度图像,在梯度图像上梯度值较

大的部分就是边缘。497.2图像锐化7.2.1梯度法2/122)],([yfxfyxfG用绝对值可得到以下近似的结果:[(,)]ffGfxyxy对于数字图像,连续导数形式可以用求差来近似表示,即(,

)(1,)ffxyfxyx(,)(,1)ffxyfxyy[(,)](,)(1,)(,)(,1)Gfxyfxyfxyfxyfxy则梯度对应的模板为507.2图像锐化7.2.1梯度法以上梯度法又称为水平垂直差分法。图像梯度

锐化结果(a)二值图像;(b)梯度运算结果采用水平垂直差分法517.2图像锐化7.2.2罗伯特梯度求梯度的两种差分运算f(i,j)f(i,j+1)f(i+1,j)f(i+1,j+1)f(i,j)f(i+1,j)(a)(b(,j+1)(+1,j+1)f(i,j)f(i,j+1)

f(i+1,j)f(i+1,j+1)(a)(b)(a)水平垂直差分法(b)交叉差分法罗伯特梯度法527.2图像锐化7.2.2罗伯特梯度罗伯特梯度法(RobertGradient),是一种交叉差分方法。其数学表达式可近似为

:G[f(x,y)]≈|f(i,j)-f(i+1,j+1)|+|f(i+1,j)-f(i,j+1)|f(i,j)f(i,j+1)f(i+1,j)f(i+1,j+1)(b)用模板表示为537.2图像锐化7.2.2罗伯特梯度Roberts梯度相当于

在图像上开一个2*2的窗口,用模板h1计算后取绝对值再加上模板h2计算后取绝对值。将计算值作为中心像素(x,y)的梯度值,如下所示。这种算法的意义在于用交叉的方法检测出像素与其在上下之间或左右之间或斜方向之间的差异。采用Roberts梯度

对图像中的每一个像素计算其梯度值,最终产生一个梯度图像,达到突出边缘的目的。547.2图像锐化7.2.2罗伯特梯度原始图像Roberts梯度图像原始图像的局部放大,方框内是像素值锐化后的局部放大,中间是中心像素的位置557.2图像锐

化7.2.3Prewitt和Sobel梯度与Roberts梯度相比,Prewitt算法较多地考虑了邻域点的关系,扩大了模板,从2*2扩大到3*3来进行差分,(x,y)为中心像素其模板为567.2图像锐化7.2.3Prew

itt和Sobel梯度Sobel梯度是在Prewitt算法的基础上,对4-邻域采用加权方法进行差分,因而对边缘的检测更加精确,常用的模板如下:577.2图像锐化7.2.3Prewitt和Sobel梯度在上面的Prewitt和Sobel模板中,hl主要对

水平方向的地物进行锐化,h2则主要对垂直方向的地物进行锐化。在应用中要注意的是,模板对于含有大量噪声的图像是不适用的。原始图像水平方向锐化垂直方向锐化587.2图像锐化7.2.3Prewitt和Sobel梯度由梯度的

计算可知:①在灰度变化平缓的区域其梯度值较小,②图像中灰度变化较大的边缘区域其梯度值大,③而在灰度均匀区域其梯度值为零。注意:以上两种梯度近似算法在图像的最后一行和最后一列的各像素的梯度无法求得,一般就用前一行和前一列的梯度值近似代替。597.2图像锐化7.2.3Prewitt

和Sobel梯度使图像轮廓突出的方法有许多在计算出图像f(x,y)的梯度值后,应如何突出图像的轮廓,可根据以下介绍的方法选择使用,即:(a)梯度图像直接输出g(x,y)=G[f(x,y)]优点:突出边缘、轮廓缺点:灰度变化平缓的区域呈现黑

色。607.2图像锐化7.2.3Prewitt和Sobel梯度(b)加阈值的梯度输出TyxfGyxfTyxfGyxfGyxg)],([),()],([)],([),(式中:T是一个非负的阈值。优点:适

当选取T,既可使明显的边缘轮廓得到突出,又不会破坏原灰度变化比较平缓的背景。T>0617.2图像锐化7.2.3Prewitt和Sobel梯度(c)轮廓灰度规定化输出TyxfGyxfTyxfGLyxgG)],([),()],([),(

TyxfGBLTyxfGyxfGyxg)],([)],([)],([),((d)背景灰度规定化输出式中:T是根据需要指定的一个灰度级,它将明显边缘用一固定的灰度级LG来实现。使边界清晰、轮廓突出、背景不破坏。此法将背景用一个固定灰度级LB来实现,便于

研究边缘灰度的变化。627.2图像锐化7.2.3Prewitt和Sobel梯度TyxfGLTyxfGLyxgBG)],([)],([),((e)二值图像输出此法将背景和边缘用二值图像表示,便于研

究边缘所在位置。一般取LG=255,LB=0。如字符识别等。637.2图像锐化7.2.4Laplacian算子拉普拉斯运算也是偏导数运算的线性组合运算。f(x,y)的拉普拉斯运算定义为:22222yfxff647.2图像锐化7.2.4Laplac

ian算子),(2),1(),1()],1(),([)],(),1([),(),1(),(22jifjifjifjifjifjifjifjifjifxyxfxx),(2)1,()1,(),(22jifjifjifyyxf

对数字图像来讲,f(x,y)的二阶偏导数可表示为x方向y方向657.2图像锐化7.2.4Laplacian算子为此,拉普拉斯算子为f2),(4)1,()1,(),1(),1(),(),(22222jifjifjifjifjifyyxfxyxff

可见,数字图像在(i,j)点的拉普拉斯算子,可以由(i,j)点灰度值减去该点4-邻域平均灰度值来求得。0101-41010拉普拉斯算子667.2图像锐化7.2.4Laplacian算子拉普拉斯锐化结果(a)二值图像;(b)拉普拉斯运算结果677.2图像锐化7.2.4Laplacian

算子梯度运算检测了图像的空间灰度变化率,因此,图像上只要有灰度变化就有变化率。Laplacian算子检测的是变化率的变化率,是二阶微分。在图像上灰度均匀和变化均匀的部分,根据Laplacian算子计算出的值为0。因此,它不检测均

匀的灰度变化,产生的图像更加突出灰度值突变的部分。图(a)是一幅7*7的数字图像,在图像中存在边界,其左上部分的灰度变化均匀。以Laplacian算法对该图像进行锐化、提取边缘的结果见(b),图像中

灰度为常数的下部与变化均匀的左上部值均为0。在锐化结果中出现了负值,而图像的灰度值应为非负数,对所有值加上一个常数(如图(b)中的最大绝对值)即可解决。687.2图像锐化7.2.4Laplacian算子(a)原图像(b)L

aplace计算结果(c)锐化结果697.2图像锐化7.2.4Laplacian算子另外一种处理方法是用原图像的值减去Laplacian算法的计算结果的整数倍,即:2(,)(,)(,)gxyfxykfxy图(c)是当k=1时的计算结果,这样的处理结果既保留了原图

像作为背景,又扩大了边缘处的对比度,锐化效果更好。在使用中要注意的是,某些软件使用的模板的符号与上面的相反,也就是说,在模板中,中心的值为4,四周相邻的值为-1(例如,ENVI软件),此时,处理后的图像

=原始图像+Laplacian计算结果707.2图像锐化7.2.4Laplacian算子实际中还常用到如下的拉普拉斯算子(模板,掩模)1111*81111H

1212*42121H0101*41010H717.2图像锐化7.2.4Laplacian算子窗口大小影响着锐化的结果。窗口越大,越突出主要地物的边缘3X37

X711X11727.2图像锐化7.2.5定向检测上面介绍的各种方法在提取边缘时没有一指定方向。为了有目的的提取某一特定方向的边缘或线性特征,可以选用特定的模板进行卷积运算。常用的模板有一以下几种。(1)检测垂直线737.2图像锐化7.2.5定

向检测(2)检测水平线(3)检测对角线747.2图像锐化7.2.5定向检测原始图像垂直检测水平检测

小橙橙
小橙橙
文档分享,欢迎浏览!
  • 文档 25747
  • 被下载 7
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?