【文档说明】Robot-Arm-Kinematics=DH-intro:机器人手臂运动学=-DH-intro课件.ppt,共(75)页,4.035 MB,由小橙橙上传
转载请保留链接:https://www.ichengzhen.cn/view-92604.html
以下为本文档部分文字说明:
MoredetailsandexamplesonrobotarmsandkinematicsDenavit-HartenbergNotationINTRODUCTIONForwardKinematics:todeterminewherethe
robot’shandis?(Ifalljointvariablesareknown)InverseKinematics:tocalculatewhateachjointvariableis?(Ifwedesirethatthehandbelocatedataparticularpoint)D
irectKinematicsDirectKinematicswithnomatricesWhereismyhand?DirectKinematics:HERE!DirectKinematics•Positionoftipin(x,y)coo
rdinatesDirectKinematicsAlgorithm1)Drawsketch2)Numberlinks.Base=0,Lastlink=n3)Identifyandnumberrobotjoints4)DrawaxisZiforjointi5)Determinejo
intlengthai-1betweenZi-1andZi6)DrawaxisXi-17)Determinejointtwisti-1measuredaroundXi-18)Determinethejointoffsetdi
9)DeterminejointangleiaroundZi10+11)WritelinktransformationandconcatenateOftensufficientfor2DKinematicProblemsforManipulation•Reliablyposit
ionthetip-gofromonepositiontoanotherposition•Don’thitanything,avoidobstacles•Makesmoothmotions–atreasonablespeedsand–atreasonable
accelerations•Adjusttochangingconditions-–i.e.whensomethingispickeduprespondtothechangeinweightROBOTSASMECHANISMsRobotKinematics:ROBOTSASMECHANISMFig
.2.1Aone-degree-of-freedomclosed-loopfour-barmechanismMultipletyperobothavemultipleDOF.(3Dimensional,openloop,chainmecha
nisms)Fig.2.2(a)Closed-loopversus(b)open-loopmechanismChapter2RobotKinematics:PositionAnalysisFig.2.3Representati
onofapointinspaceApointPinspace:3coordinatesrelativetoareferenceframe^^^kcjbiaPzyxRepresentation
ofaPointinSpaceChapter2RobotKinematics:PositionAnalysisFig.2.4RepresentationofavectorinspaceAVectorPinspace:3coordina
tesofitstailandofitshead^^^__kcjbiaPzyxwzyxP__RepresentationofaVectorinSpaceChapter2Ro
botKinematics:PositionAnalysisFig.2.5RepresentationofaframeattheoriginofthereferenceframeEachUnitVectorismutua
llyperpendicular.:normal,orientation,approachvectorzzzyyyxxxaonaonaonFRepresentationofaFrameattheOriginofaFixed-ReferenceF
rameChapter2RobotKinematics:PositionAnalysisFig.2.6RepresentationofaframeinaframeEachUnitVectorismutuallyperpendicular.:norma
l,orientation,approachvector1000zzzzyyyyxxxxPaonPaonPaonFRepresentationofaFrameinaFixedReferenceFrameThesameasl
astslideChapter2RobotKinematics:PositionAnalysisFig.2.8RepresentationofanobjectinspaceAnobjectcanbe
representedinspacebyattachingaframetoitandrepresentingtheframeinspace.1000zzzzyyyyxxxxobjectPaonPaonPaonF
RepresentationofaRigidBodyChapter2RobotKinematics:PositionAnalysisAtransformationmatricesmustbeinsquareform.•Itismucheasiertocalculatetheinverseofsq
uarematrices.•Tomultiplytwomatrices,theirdimensionsmustmatch.1000zzzzyyyyxxxxPaonPaonPaonFHOM
OGENEOUSTRANSFORMATIONMATRICESRepresentationofTransformationsofrigidobjectsin3DspaceChapter2RobotKinematics:PositionAnalysi
sFig.2.9RepresentationofanpuretranslationinspaceAtransformationisdefinedasmakingamovementinspace.•Apuretranslation.•Apurer
otationaboutanaxis.•Acombinationoftranslationorrotations.1000100010001zyxdddTRepresentationofaPureTranslati
onidentitySamevalueaChapter2RobotKinematics:PositionAnalysisFig.2.10Coordinatesofapointinarotatingframebeforeandafterrotationaroundaxisx.Assumption:
Theframeisattheoriginofthereferenceframeandparalleltoit.Fig.2.11Coordinatesofapointrelativetothereferenceframeandrotatingframeasview
edfromthex-axis.RepresentationofaPureRotationaboutanAxisProjectionsasseenfromxaxisx,y,zn,o,aFig.2.13Effectsofth
reesuccessivetransformationsAnumberofsuccessivetranslationsandrotations….RepresentationofCombinedTransformationsOrder
isimportantx,y,zn,o,anioiaiT1T2T3Fig.2.14ChangingtheorderoftransformationswillchangethefinalresultOrderofTransformationsisimportantx
,y,zn,o,atranslationChapter2RobotKinematics:PositionAnalysisFig.2.15Transformationsrelativetothecurrentframes.Example2.8
TransformationsRelativetotheRotatingFrametranslationrotationMATRICESFORFORWARDANDINVERSEKINEMATICSOFROBOTS•Forposit
ion•FororientationChapter2RobotKinematics:PositionAnalysisFig.2.17Thehandframeoftherobotrelativetotherefe
renceframe.ForwardKinematicsAnalysis:•Calculatingthepositionandorientationofthehandoftherobot.Ifallrobotjointvariablesareknown,onecanca
lculatewheretherobotisatanyinstant..FORWARDANDINVERSEKINEMATICSOFROBOTSChapter2RobotKinematics:PositionAnalysisForwardKinema
ticsandInverseKinematicsequationforpositionanalysis:(a)Cartesian(gantry,rectangular)coordinates.(b)Cylindricalcoordinates.(c)Sph
ericalcoordinates.(d)Articulated(anthropomorphic,orall-revolute)coordinates.ForwardandInverseKinematicsEquationsforPositionChapter2RobotKinematics:P
ositionAnalysisIBM7565robot•Allactuatorislinear.•AgantryrobotisaCartesianrobot.Fig.2.18CartesianCoordinates.1000100010001zyxcartPR
PPPTTForwardandInverseKinematicsEquationsforPosition(a)Cartesian(Gantry,Rectangular)CoordinatesChapter2RobotKinematics:PositionAnalysis
2Lineartranslationsand1rotation•translationofralongthex-axis•rotationofaboutthez-axis•translationoflalongthez-axisF
ig.2.19CylindricalCoordinates.100010000lrSCSrCSCTTcylPR,0,0))Trans(,)Rot(Trans(0,0,),,(rzllrTTcylPRForwardan
dInverseKinematicsEquationsforPosition:CylindricalCoordinatescosinesineChapter2RobotKinematics:Posit
ionAnalysis2Lineartranslationsand1rotation•translationofralongthez-axis•rotationofaboutthey-axis•rotationo
falongthez-axisFig.2.20SphericalCoordinates.10000rCCSSrSSSCSCC
rSCSSCCTTsphPR))Trans()Rot(Rot()(0,0,,,,,yzlrsphPRTTForwardandInverseKinematicsEquationsforPosition(c)Spheri
calCoordinatesChapter2RobotKinematics:PositionAnalysis3rotations->Denavit-HartenbergrepresentationFig.2.21A
rticulatedCoordinates.ForwardandInverseKinematicsEquationsforPosition(d)ArticulatedCoordinatesChapter2RobotKinematics:PositionAnalysisRoll,Pitch,Y
aw(RPY)anglesEuleranglesArticulatedjointsForwardandInverseKinematicsEquationsforOrientationChapter2RobotKinem
atics:PositionAnalysisRoll:Rotationofabout-axis(z-axisofthemovingframe)Pitch:Rotationofabout-axis(y-axis
ofthemovingframe)Yaw:Rotationofabout-axis(x-axisofthemovingframe)aaononFig.2.22RPYrotationsaboutthecurrentaxes.ForwardandIn
verseKinematicsEquationsforOrientation(a)Roll,Pitch,Yaw(RPY)AnglesChapter2RobotKinematics:PositionAnalysisFig.2.24Eulerrotationsaboutthecurrentax
es.Rotationofabout-axis(z-axisofthemovingframe)followedbyRotationofabout-axis(y-axisofthemovingframe)followedbyRotationofabout-axis(z-axisofthe
movingframe).aoaForwardandInverseKinematicsEquationsforOrientation(b)EulerAnglesChapter2RobotKinematics:Po
sitionAnalysis)()(,,,,noazyxcartHRRPYPPPTT)()(,,,,EulerTTrsphHRAssumption:RobotismadeofaCartesianandanRPYsetofjoints.Assumption:Robo
tismadeofaSphericalCoordinateandanEulerangle.AnotherCombinationcanbepossible……Denavit-HartenbergReprese
ntationForwardandInverseKinematicsEquationsforOrientationRoll,Pitch,Yaw(RPY)AnglesForwardandInverseTransformationsforrobotarmsF
ig.2.16TheUniverse,robot,hand,part,andendeffecterframes.StepsofcalculationofanInversematrix:1.Calculatethedet
erminantofthematrix.2.Transposethematrix.3.Replaceeachelementofthetransposedmatrixbyitsownminor(adjointmatrix).4.D
ividetheconvertedmatrixbythedeterminant.INVERSEOFTRANSFORMATIONMATRICESIdentityTransformations1.WeoftenneedtocalculateINVERSEMATRICES2.
Itisgoodtoreducethenumberofsuchoperations3.WeneedtodothesecalculationsfastHowtofindanInverseMatrixBofmatrixA?InverseHomogeneousTransformation
HomogeneousCoordinates•Homogeneouscoordinates:embed3Dvectorsinto4Dbyaddinga“1”•Moregenerally,thetransformationmatrixThastheform:Fact
orScalingTrans.Perspect.VectorTrans.MatrixRot.Ta11a12a13b1a21a22a23b2a31a32a33b3c1c2c3sfItispresentedinmoredetailont
heWWW!ForvarioustypesofrobotswehavedifferentmaneuveringspacesForvarioustypesofrobotswecalculatedifferentforwardandinve
rsetransformationsForvarioustypesofrobotswesolvedifferentforwardandinversekinematicproblemsForwardandInverseKinematics:SingleLinkExampleForw
ardandInverseKinematics:SingleLinkExampleeasyDenavit–HartenbergideaDenavit-HartenbergRepresentation:Fig.2.25AD-Hrepresentationofageneral-purp
osejoint-linkcombination@Simplewayofmodelingrobotlinksandjointsforanyrobotconfiguration,regardlessofitsseq
uenceorcomplexity.@Transformationsinanycoordinatesispossible.@Anypossiblecombinationsofjointsandlinksa
ndall-revolutearticulatedrobotscanberepresented.DENAVIT-HARTENBERGREPRESENTATIONOFFORWARDKINEMATICEQUATIONSOFROBOTChapter2RobotKinematic
s:PositionAnalysis⊙:Arotationanglebetweentwolinks,aboutthez-axis(revolute).⊙d:Thedistance(offset)onthez-axis,betweenlinks(prismatic).⊙a:Thelengthofe
achcommonnormal(Jointoffset).⊙:The“twist”anglebetweentwosuccessivez-axes(Jointtwist)(revolute)Onlyanddarejointvar
iables.DENAVIT-HARTENBERGREPRESENTATIONSymbolTerminologies:Linksarein3D,anyshapeassociatedwithZialwaysOnlyrotationOnlytranslationOnlyoffsetO
nlyoffsetOnlyrotationAxisalignmentDENAVIT-HARTENBERGREPRESENTATIONforeachlink4linkparametersChapter2RobotKinematics:PositionAnalysis⊙:Arotationangl
ebetweentwolinks,aboutthez-axis(revolute).⊙d:Thedistance(offset)onthez-axis,betweenlinks(prismatic).⊙a:Thelengthofeachcommonnormal(Jointoffset
).⊙:The“twist”anglebetweentwosuccessivez-axes(Jointtwist)(revolute)Onlyanddarejointvariables.DENAVIT-HARTENBERGREPRES
ENTATIONSymbolTerminologies:ExamplewiththreeRevoluteJointsi(i-1)a(i-1)dii0000010a0012-90a1d22Z0X0Y0Z1X2Y1X1Y2d2a0a1Denavit-Ha
rtenbergLinkParameterTableTheDHParameterTableApplyfirstApplylastDenavit-HartenbergRepresentationofJoint-Link-JointTransfor
mationNotationforDenavit-HartenbergRepresentationofJoint-Link-JointTransformationAlphaappliedfirstFourTransformationsfromoneJointtotheNe
xt•Orderofmultiplicationofmatricesisinverseoforderofapplyingthem•HereweshoworderofmatricesJoint-Link-JointDenavit-HartenbergRe
presentationofJoint-Link-JointTransformation•AlphaisappliedfirstHowtocreateasinglematrixAnEXAMPLE:De
navit-HartenbergRepresentationofJoint-Link-JointTransformationforType1LinkFinalmatrixfrompreviousslidesubstitutesubstituteN
umericorsymbolicmatricesTheDenavit-HartenbergMatrixforanotherlinktype1000cosαcosαs
inαcosθsinαsinθsinαsinαcosαcosθcosαsinθ0sinθcosθi1)(i1)(i1)(ii1)(iii1)(i1)(i1)(ii1)(ii1)(iiidda•SimilaritytoHomegeneous:JustliketheHomogeneous
Matrix,theDenavit-HartenbergMatrixisatransformationmatrixfromonecoordinateframetothenext.•UsingaseriesofD-HMatrixmultiplicationsan
dtheD-HParametertable,thefinalresultisatransformationmatrixfromsomeframetoyourinitialframe.Z(i-1)X(i-1)Y(i-1)(i-1)a(i-1)ZiYiXiaidiiPutthetra
nsformationhereforeverylink1.InDENAVIT-HARTENBERGREPRESENTATIONwemustbeabletofindparametersforeachlink2.SowemustknowlinktypesL
inksbetweenrevolutejointsln=0Type3LinkJointn+1Jointndn=0Linknxn-1xnln=0dn=0Type4LinkOriginscoinciden-1Jointn+1JointnPartofdn-1Linknxn-1yn-1xnnLi
nksbetweenprismaticjointsForwardandInverseTransformationsonMatricesStartpoint:•Assignjointnumberntothefirstshownjoint.•Assignalocalref
erenceframeforeachandeveryjointbeforeorafterthesejoints.•Y-axisisnotusedinD-Hrepresentation.DENAVIT-HARTENBERGREPR
ESENTATIONPROCEDURES.1٭Alljointsarerepresentedbyaz-axis.•(right-handruleforrotationaljoint,linearmovementforpr
ismaticjoint)2.Thecommonnormalisonelinemutuallyperpendiculartoanytwoskewlines.3.Parallelz-axesjointsmakeain
finitenumberofcommonnormal.4.Intersectingz-axesoftwosuccessivejointsmakenocommonnormalbetweenthem(Lengthis0.).DENAVIT-HARTENBERGREPRESENTATIONProc
eduresforassigningalocalreferenceframetoeachjoint:Chapter2RobotKinematics:PositionAnalysis⊙:Arotation
aboutthez-axis.⊙d:Thedistanceonthez-axis.⊙a:Thelengthofeachcommonnormal(Jointoffset).⊙:Theanglebetweentwosuccessivez-axes(Joint
twist)Onlyanddarejointvariables.DENAVIT-HARTENBERGREPRESENTATIONSymbolTerminologiesReminder:Chapter2RobotKinematics:PositionAnalysis(I)Rotateab
outthezn-axisanableofn+1.(Coplanar)(II)Translatealongzn-axisadistanceofdn+1tomakexnandxn+1colinear.(III)Translateal
ongthexn-axisadistanceofan+1tobringtheoriginsofxn+1together.(IV)Rotatezn-axisaboutxn+1axisanangleof
n+1toalignzn-axiswithzn+1-axis.DENAVIT-HARTENBERGREPRESENTATIONThenecessarymotionstotransformfromonereferenceframetothene
xt.