【文档说明】Robot-Arm-Kinematics=DH-intro:机器人手臂运动学=-DH-intro课件.ppt,共(75)页,4.035 MB,由小橙橙上传
转载请保留链接:https://www.ichengzhen.cn/view-92604.html
以下为本文档部分文字说明:
MoredetailsandexamplesonrobotarmsandkinematicsDenavit-HartenbergNotationINTRODUCTIONForwardKinemati
cs:todeterminewheretherobot’shandis?(Ifalljointvariablesareknown)InverseKinematics:tocalculatewhateachjointvariableis?(Ifwedesirethatthe
handbelocatedataparticularpoint)DirectKinematicsDirectKinematicswithnomatricesWhereismyhand?DirectKinematics:HERE!DirectKinematics•Posit
ionoftipin(x,y)coordinatesDirectKinematicsAlgorithm1)Drawsketch2)Numberlinks.Base=0,Lastlink=n3)Identi
fyandnumberrobotjoints4)DrawaxisZiforjointi5)Determinejointlengthai-1betweenZi-1andZi6)DrawaxisXi-17)Determinejointtwist
i-1measuredaroundXi-18)Determinethejointoffsetdi9)DeterminejointangleiaroundZi10+11)Writelinktransformatio
nandconcatenateOftensufficientfor2DKinematicProblemsforManipulation•Reliablypositionthetip-gofromonepositiontoanotherposition•Don’thitanything,avoido
bstacles•Makesmoothmotions–atreasonablespeedsand–atreasonableaccelerations•Adjusttochangingconditions-–i.e.whensomethingispickeduprespondtothechangei
nweightROBOTSASMECHANISMsRobotKinematics:ROBOTSASMECHANISMFig.2.1Aone-degree-of-freedomclosed-loopfour-barmechanismMultipletyperobot
havemultipleDOF.(3Dimensional,openloop,chainmechanisms)Fig.2.2(a)Closed-loopversus(b)open-loopmechanismC
hapter2RobotKinematics:PositionAnalysisFig.2.3RepresentationofapointinspaceApointPinspace:3coordinatesrelativetoareferenceframe^^^kcjbiaPzyxRep
resentationofaPointinSpaceChapter2RobotKinematics:PositionAnalysisFig.2.4RepresentationofavectorinspaceAVectorPinspace:3coordi
natesofitstailandofitshead^^^__kcjbiaPzyxwzyxP__RepresentationofaVectorinSpaceChapter2RobotKinemati
cs:PositionAnalysisFig.2.5RepresentationofaframeattheoriginofthereferenceframeEachUnitVectorismutuallyperpendicular.:normal,orientation,appr
oachvectorzzzyyyxxxaonaonaonFRepresentationofaFrameattheOriginofaFixed-ReferenceFrameChapter2Ro
botKinematics:PositionAnalysisFig.2.6RepresentationofaframeinaframeEachUnitVectorismutuallyperpendicular.:normal,orientatio
n,approachvector1000zzzzyyyyxxxxPaonPaonPaonFRepresentationofaFrameinaFixedReferenceFrameThesameaslastslideChapter2
RobotKinematics:PositionAnalysisFig.2.8RepresentationofanobjectinspaceAnobjectcanberepresentedinspacebyattachingaframetoitand
representingtheframeinspace.1000zzzzyyyyxxxxobjectPaonPaonPaonFRepresentationofaRigidBodyChapter2RobotKinematics:PositionAna
lysisAtransformationmatricesmustbeinsquareform.•Itismucheasiertocalculatetheinverseofsquarematrices.•Tomultiplytwomatrices,theirdi
mensionsmustmatch.1000zzzzyyyyxxxxPaonPaonPaonFHOMOGENEOUSTRANSFORMATIONMATRICESRepresentationofTransformationsofrigidobjectsin3
DspaceChapter2RobotKinematics:PositionAnalysisFig.2.9RepresentationofanpuretranslationinspaceAtransformationisdefinedasmakin
gamovementinspace.•Apuretranslation.•Apurerotationaboutanaxis.•Acombinationoftranslationorrotations.
1000100010001zyxdddTRepresentationofaPureTranslationidentitySamevalueaChapter2RobotKinematics:PositionAnalysisFig.2.10Coordinates
ofapointinarotatingframebeforeandafterrotationaroundaxisx.Assumption:Theframeisattheoriginofthereferenceframeandparalleltoit.Fig.2.11Coo
rdinatesofapointrelativetothereferenceframeandrotatingframeasviewedfromthex-axis.RepresentationofaPureRotationab
outanAxisProjectionsasseenfromxaxisx,y,zn,o,aFig.2.13EffectsofthreesuccessivetransformationsAnumberofsuccessivetrans
lationsandrotations….RepresentationofCombinedTransformationsOrderisimportantx,y,zn,o,anioiaiT1T2T3Fig.2.14Changingtheorderoftransformationswillcha
ngethefinalresultOrderofTransformationsisimportantx,y,zn,o,atranslationChapter2RobotKinematics:PositionAnalysisFig.2.15Transformationsrelativeto
thecurrentframes.Example2.8TransformationsRelativetotheRotatingFrametranslationrotationMATRICESFORFORWARDANDINVERSEKINEMATICSOFROB
OTS•Forposition•FororientationChapter2RobotKinematics:PositionAnalysisFig.2.17Thehandframeoftherobotrelativetothereferencef
rame.ForwardKinematicsAnalysis:•Calculatingthepositionandorientationofthehandoftherobot.Ifallrobotjointvariabl
esareknown,onecancalculatewheretherobotisatanyinstant..FORWARDANDINVERSEKINEMATICSOFROBOTSChapter2RobotKinematics:PositionAnalysi
sForwardKinematicsandInverseKinematicsequationforpositionanalysis:(a)Cartesian(gantry,rectangular)coordin
ates.(b)Cylindricalcoordinates.(c)Sphericalcoordinates.(d)Articulated(anthropomorphic,orall-revolute)coordinates.Forwar
dandInverseKinematicsEquationsforPositionChapter2RobotKinematics:PositionAnalysisIBM7565robot•Allactuatorislinear.•AgantryrobotisaCart
esianrobot.Fig.2.18CartesianCoordinates.1000100010001zyxcartPRPPPTTForwardandInverseKinematicsEquationsforPosi
tion(a)Cartesian(Gantry,Rectangular)CoordinatesChapter2RobotKinematics:PositionAnalysis2Lineartranslationsand1ro
tation•translationofralongthex-axis•rotationofaboutthez-axis•translationoflalongthez-axisFig.2.19CylindricalCo
ordinates.100010000lrSCSrCSCTTcylPR,0,0))Trans(,)Rot(Trans(0,0,),,(rzllrTTcylPRForwardan
dInverseKinematicsEquationsforPosition:CylindricalCoordinatescosinesineChapter2RobotKinematics:PositionAnalysis2Lineartranslationsand1rota
tion•translationofralongthez-axis•rotationofaboutthey-axis•rotationofalongthez-axisFig.2.20SphericalCoordinates.
10000rCCSSrSSSCSCCrSCSSCCTTsphPR))Trans()Rot(Rot()(0,0,,,,,yzlrsphPRTTForwardandInverseKinematicsEquationsf
orPosition(c)SphericalCoordinatesChapter2RobotKinematics:PositionAnalysis3rotations->Denavit-Hartenbergrepresent
ationFig.2.21ArticulatedCoordinates.ForwardandInverseKinematicsEquationsforPosition(d)ArticulatedCoordinatesChapter2RobotKinematics:Pos
itionAnalysisRoll,Pitch,Yaw(RPY)anglesEuleranglesArticulatedjointsForwardandInverseKinematicsEquationsforOrientati
onChapter2RobotKinematics:PositionAnalysisRoll:Rotationofabout-axis(z-axisofthemovingframe)Pitch:Rotationofabout-axis
(y-axisofthemovingframe)Yaw:Rotationofabout-axis(x-axisofthemovingframe)aaononFig.2.22RPYrotationsaboutthecurrentaxes.Forw
ardandInverseKinematicsEquationsforOrientation(a)Roll,Pitch,Yaw(RPY)AnglesChapter2RobotKinematics:Po
sitionAnalysisFig.2.24Eulerrotationsaboutthecurrentaxes.Rotationofabout-axis(z-axisofthemovingframe)followedbyRotationofabout-axis(y-axis
ofthemovingframe)followedbyRotationofabout-axis(z-axisofthemovingframe).aoaForwardandInverseKinematicsEquations
forOrientation(b)EulerAnglesChapter2RobotKinematics:PositionAnalysis)()(,,,,noazyxcartHRRPYPPPTT)()(,
,,,EulerTTrsphHRAssumption:RobotismadeofaCartesianandanRPYsetofjoints.Assumption:RobotismadeofaSphericalCoordinateandanEulerangl
e.AnotherCombinationcanbepossible……Denavit-HartenbergRepresentationForwardandInverseKinematicsEquationsforOrientationRoll,Pitch,
Yaw(RPY)AnglesForwardandInverseTransformationsforrobotarmsFig.2.16TheUniverse,robot,hand,part,andendeffecterframes.Stepsof
calculationofanInversematrix:1.Calculatethedeterminantofthematrix.2.Transposethematrix.3.Replaceeachelementofthetransposedmatrixbyitsown
minor(adjointmatrix).4.Dividetheconvertedmatrixbythedeterminant.INVERSEOFTRANSFORMATIONMATRICESIdentityTransformations1.WeoftenneedtocalculateINVERS
EMATRICES2.Itisgoodtoreducethenumberofsuchoperations3.WeneedtodothesecalculationsfastHowtofindanInverseMatrixBofm
atrixA?InverseHomogeneousTransformationHomogeneousCoordinates•Homogeneouscoordinates:embed3Dvectorsinto4Dbyaddinga“1”•Moregenerally,thetransformation
matrixThastheform:FactorScalingTrans.Perspect.VectorTrans.MatrixRot.Ta11a12a13b1a21a22a23b2a31a32a33b3c1c2c3sfItispresentedinmo
redetailontheWWW!ForvarioustypesofrobotswehavedifferentmaneuveringspacesForvarioustypesofrobotswecalculatedifferentforwardandinvers
etransformationsForvarioustypesofrobotswesolvedifferentforwardandinversekinematicproblemsForwardandInverseKinematic
s:SingleLinkExampleForwardandInverseKinematics:SingleLinkExampleeasyDenavit–HartenbergideaDenavit-HartenbergRep
resentation:Fig.2.25AD-Hrepresentationofageneral-purposejoint-linkcombination@Simplewayofmodelingrobotlinksandjointsfora
nyrobotconfiguration,regardlessofitssequenceorcomplexity.@Transformationsinanycoordinatesispossible.@An
ypossiblecombinationsofjointsandlinksandall-revolutearticulatedrobotscanberepresented.DENAVIT-HARTENBERGREPR
ESENTATIONOFFORWARDKINEMATICEQUATIONSOFROBOTChapter2RobotKinematics:PositionAnalysis⊙:Arotationanglebetweentwolinks,aboutthez-axis(revolute).⊙d:Th
edistance(offset)onthez-axis,betweenlinks(prismatic).⊙a:Thelengthofeachcommonnormal(Jointoffset).⊙:The“twist”an
glebetweentwosuccessivez-axes(Jointtwist)(revolute)Onlyanddarejointvariables.DENAVIT-HARTENBERGREPRESENTATIONSymbolTermin
ologies:Linksarein3D,anyshapeassociatedwithZialwaysOnlyrotationOnlytranslationOnlyoffsetOnlyoffsetOnlyrotationAx
isalignmentDENAVIT-HARTENBERGREPRESENTATIONforeachlink4linkparametersChapter2RobotKinematics:PositionAnalysis⊙:A
rotationanglebetweentwolinks,aboutthez-axis(revolute).⊙d:Thedistance(offset)onthez-axis,betweenlinks
(prismatic).⊙a:Thelengthofeachcommonnormal(Jointoffset).⊙:The“twist”anglebetweentwosuccessivez-axes(Jointtwist)(revolute)Onlya
nddarejointvariables.DENAVIT-HARTENBERGREPRESENTATIONSymbolTerminologies:ExamplewiththreeRevoluteJointsi(i-1)a(i-1)dii0000010a0012-90a1d22Z
0X0Y0Z1X2Y1X1Y2d2a0a1Denavit-HartenbergLinkParameterTableTheDHParameterTableApplyfirstApplylastDenavit-HartenbergRepresent
ationofJoint-Link-JointTransformationNotationforDenavit-HartenbergRepresentationofJoint-Link-JointTransformationAlphaapp
liedfirstFourTransformationsfromoneJointtotheNext•Orderofmultiplicationofmatricesisinverseoforderofapplyingthem•HereweshoworderofmatricesJoint
-Link-JointDenavit-HartenbergRepresentationofJoint-Link-JointTransformation•AlphaisappliedfirstHowtocreat
easinglematrixAnEXAMPLE:Denavit-HartenbergRepresentationofJoint-Link-JointTransformationforType1LinkFinalmatrixfromprevioussl
idesubstitutesubstituteNumericorsymbolicmatricesTheDenavit-HartenbergMatrixforanotherlinktype1000cosαcosαsinαcos
θsinαsinθsinαsinαcosαcosθcosαsinθ0sinθcosθi1)(i1)(i1)(ii1)(iii1)(i1)(i1)(ii1)(ii1)(iiidda•SimilaritytoHomegeneous:Ju
stliketheHomogeneousMatrix,theDenavit-HartenbergMatrixisatransformationmatrixfromonecoordinateframetothenext.•Usinga
seriesofD-HMatrixmultiplicationsandtheD-HParametertable,thefinalresultisatransformationmatrixfromsomeframetoyourinit
ialframe.Z(i-1)X(i-1)Y(i-1)(i-1)a(i-1)ZiYiXiaidiiPutthetransformationhereforeverylink1.InDENAVIT-HARTENBERGREPRESENTATIONwemustbeabletofindparameter
sforeachlink2.SowemustknowlinktypesLinksbetweenrevolutejointsln=0Type3LinkJointn+1Jointndn=0Linknxn-1xnln=0
dn=0Type4LinkOriginscoinciden-1Jointn+1JointnPartofdn-1Linknxn-1yn-1xnnLinksbetweenprismaticjointsForwarda
ndInverseTransformationsonMatricesStartpoint:•Assignjointnumberntothefirstshownjoint.•Assignalocalreferenceframefor
eachandeveryjointbeforeorafterthesejoints.•Y-axisisnotusedinD-Hrepresentation.DENAVIT-HARTENBERGREPRESENTATIO
NPROCEDURES.1٭Alljointsarerepresentedbyaz-axis.•(right-handruleforrotationaljoint,linearmovementforprismaticjoint)2.Thecommonnormal
isonelinemutuallyperpendiculartoanytwoskewlines.3.Parallelz-axesjointsmakeainfinitenumberofcommonnorm
al.4.Intersectingz-axesoftwosuccessivejointsmakenocommonnormalbetweenthem(Lengthis0.).DENAVIT-HARTENBERGREPRESENTATIONProceduresfora
ssigningalocalreferenceframetoeachjoint:Chapter2RobotKinematics:PositionAnalysis⊙:Arotationaboutthez-axis.⊙d:Thedistanceonthez-axis.⊙a:Thelengthof
eachcommonnormal(Jointoffset).⊙:Theanglebetweentwosuccessivez-axes(Jointtwist)Onlyanddarejointvariables.DENAVIT-HARTE
NBERGREPRESENTATIONSymbolTerminologiesReminder:Chapter2RobotKinematics:PositionAnalysis(I)Rotateaboutthezn-axisanableof
n+1.(Coplanar)(II)Translatealongzn-axisadistanceofdn+1tomakexnandxn+1colinear.(III)Translatealongthexn-axisadistanceofan+1to
bringtheoriginsofxn+1together.(IV)Rotatezn-axisaboutxn+1axisanangleofn+1toalignzn-axiswithzn+1-axis.DENAVIT-HARTENBERGREPRESENTATIONThe
necessarymotionstotransformfromonereferenceframetothenext.