【文档说明】计算机科学与技术系数值计算方法第3章2矩阵的三角分解法矩阵求逆-课件.ppt,共(64)页,295.514 KB,由小橙橙上传
转载请保留链接:https://www.ichengzhen.cn/view-77406.html
以下为本文档部分文字说明:
3.2矩阵的三角分解法我们知道对矩阵进行一次初等变换,就相当于用相应的初等矩阵去左乘原来的矩阵。因此我们这个观点来考察Gauss消元法用矩阵乘法来表示,即可得到求解线性方程组的另一种直接法:矩阵的三角分解。3
.2.1Gauss消元法的矩阵形式)2()1(1)2()2(2)2()2()1()1()1()1()1()1()1()1()1()1()1()1(131211)1(11)1(1111131121)1(
11................................................................................................1......00.......
..1011...,32i)()((1),,...,,0:122211211212222111211AALaaaaaaaaaaaaaaaalllni-laalaaaannnnnnnnnnnniiin
,其矩阵形式为,,行行令消零时,将步等价于第则)()()()3()3()3(3)3(3)3(33)2(2)2(23)2(22)1(1)1(13)1(12)1(11222)2(22)2(222322)2
(22...00..................00...0...:),...,4,3(1...00.........0...100...0100...00102AaaaaaaaaaaaALAniaalllLannnnnn)()(iin
,即有左乘时,用矩阵步等价于:若同理第1...1111....
.....11...000..................00...0......2321212111)()3(3)3(33)2(2)2(23)2(22)1(1)1(13)1(12)1(111221nnnnnnnnnnllLllLUaaaaaaa
aaaALLLL因为以此类推可得为上三角阵为单位下三角阵,其中所以U1............111...)...(1213231211112121111221LLUUllllllULLLLULLLLAnnnnnnnn分解。行直接进否
对矩阵因此,关键问题在于能个三角方程:就等价于解两由此解线性方程组LUAyUxbLyULAbxbx)(3.2.2Doolittle分解11313131113111212121112111112323221312113231213332
31232221131211)3,2,1(11113,ualluaualluajauuakuuuuuulllaaaaaaaaanULjjjj得由;得由时
:为例的各元素,以此分解在于如何算出)(322332133133333323321331332212313232233212313213212323231321231221222222122122ulula
uuululakuulalululaulauuulaulauuulak得时:由得由;得由;得时:Doolittle分解若矩阵A有分解:A=LU,其中L为单位下三角阵,U为上三角阵,则称该分解为Doolittle分解,可以证明,当A的各阶顺序主子
式均不为零时,Doolittle分解可以实现并且唯一。A的各阶顺序主子式均不为零,即),...2,1(0...............1111nkaaaaAkkkkkDoolittle分解各元素方法逐行逐列求解用比较等式两边元素的令ULuuuuuulllaaaaaaaaann
nnnnnnn,......1...11.........222112112121n2n1n2222112111D
oolittle分解。得再由;得由时:。得再由;得由时),...,4,3(),...,3,2(12),...,3,2(),...2,1(1:12212122222121212222121211111111i1111niuulalululanjulauuulakniuallua
njauuakiiiiiijijjjjjiiijjjjDoolittle分解1111211211,...1,00]0...10...[,...,kttjk
tkjkjktkjtjktjjjjkkkkkjknkkkknkkjulauuuluuulllakjuuuk)(有步时:计算第Doolittle分解
11111111,...1/)(00]0...0,1,...,[,...,ktkktkitikikktkkiktkitkkkikiiknkkknkiuulalululuullakill)(得,于是由由于计算Doolittle分解
nnnnnnkkkttkitikikkttjktkjkjulluuluuunkuulalnkinkjulau.........A,...,2,1/)(),...,1;,...,(2122221112111111的各位各元素
在计算机内存于即Doolittle分解。可获解得及再由TniinijjijiiijjijiixxxnniuxuyxniylbyULxyxby),...,,(1,...1,/)(,...,2,121111例题
30191063619134652.D.1321xxxoolittle分解求解方程组试用例例题。,;,,,令、分解解:326246521101001636191346521311121131
211332322131211323121luluuukuuuuuulllALU例题LUAululaukuulalulauul
auk473652143121434/)(7)6(21935213223321331333322123132321321232312212
222所以时:,时:例题TyyyyyyybLy)4,1,10(43034,12019,1030191014312112321321
即得)解(、解方程组例题。所以方程组的解为解得:解TxxxxxxxyUx)1,2,3(3,2,14110473652)2(123321Doolittle分解).
,...,,()(),,...,(/)(;/)2),...,)(;)1)(),...,(/)(),...,(,...,)2),...,,(/))(),...,,(),,...,,,()1(nixniuxuyxay
xniylbybyyUxbLynkiuulalankkjulauankniaalaLUAnibnjiaiiinijjijiinmnnijjijiikkkttkitikikikkttjktkjkjkjiiiiij
2141212311323212212111111111111111输出:方程组的解;;和解;;做对;分解输入:3.2.3对称矩阵的
Cholesky分解在应用数学中,线性方程组大多数的系数矩阵为对称正定这一性质,因此利用对称正定矩阵的三角分解式求解对称正定方程组的一种有效方法,且分解过程无需选主元,有良好的数值稳定性。对称矩阵的C
holesky分解A对称:AT=AA正定:A的各阶顺序主子式均大于零。即),...2,1(0...............1111nkaaaaAkkkkk对称矩阵的Cholesky分解由Doolittle分解,A
有唯一分解。,也就是所以,,有即TTTTTTTTTLLAULULLULULULULUALU)(A对称矩阵的Cholesky分解定理3.2.4设A为对称正定矩阵,则存在唯一分解A=LDLT,其中L为单位下三角阵,D=diag
(d1,d2,…,dn)且di>0(i=1,…,n)对称矩阵的Cholesky分解证明:ndddUULLUADoolittle21111,A令非奇异的上三角阵。为为单位下三角阵,其中分解为分解可唯一是对称正定,由因为对称矩阵的Cholesky分解均
大于零即。得由;得;由得故有的顺序主子式均大于零是正定的,则又因为nnnnddddddddddddA,...,,00............;0000A21212212111对称矩阵的Cholesky分解。所以为单位上三角阵。为对角阵其中故LDUAUDDUddddddd
Un,1.........1*...*1*.......*12211211对称矩阵的Cholesky分解。,所以故有对称,即又因为TTTTTTLDLAULA
DLULDUAA)(推论:设A为对称正定矩阵,则存在唯一分解其中L为具有主对角元素为正数的下三角矩阵。TLLA对称矩阵的Cholesky分解证明:0,...,0,0))((4.2.3),...,,(2
121212121nTTTndddLLLLDLDLDLAddddiagD的主对角元素为其中则由定理令Cholesky分解的求法
332322131211333231222111333231232221131211212221113?.........,llllllllllllaaaaaaaaanlllllllLLLAAijnnnnT为例。以如何求
令则对称正定设Cholesky分解的求法。,得由;,得时:由。;同理得,得由;,得时:由2221313232223221313222122222222212211313111212111212111112111121lllalllllalalllaklalla
lllaallakCholesky分解的求法njnjilllallalnlallllakjjjkjkikijijjkjkjjjjii,...
,2,1,,...,1/)()(,311211122123333323323223133有阶行列式推广到,得时:由Cholesky分解法TTLLAyxLbLybAXcholesky其中分解法解线性方程组用Ch
olesky分解法缺点及优点优点:可以减少存储单元。缺点:存在开方运算,可能会出现根号下负数。改进Cholesky分解法改进的cholesky分解A=LDLT
nnnnnnnnTnnnnnndlddldlddldldlddllllllDLLAdddDllllllL
..................1............111)(1............11133322322211311211112132312121121323121由改进的cholesky分解112
1111211,...,2,1)1,..,2,1(/)(),...,2,1()1,..,2,1(jkkikiiijjkjkkikijijjkikikiijijjkjkkikijnidladijdldlalniddlaijdlldlaji由此可得有逐行相乘,并注意到改进的cholesky
分解)1,...,2,1,...,3,2(,1111ijnilcaddcllcacdcldlcikikikiiijijijjkjkikijijjijijjijij,成所以可将上述公式改写,
则可令为减少计算量TnnnTdydydyyDdddDDLLACholeskyyxbybx),...,,(111221112111故即等价于求分解法解线性方程组用改进的cholesky分解算法;;
;做对做对分解,输入1111)2(1,...,2,1)1(,...,3,2.2);,...2,1(),...,2,1(.1ikikikiiiiijijijijjkikikijijTiijlcadad
clalcacijniLDLAnibni,ja改进的cholesky分解算法。输出:;;解;;解解),...,2,1()3()1,...,1()2(),...,2()1(.3111111nixnixldyxdyxyDxLniylbybybLyAinikkkiiiin
nnTikkikiibx例题分解做解:对系数矩阵算法解方程组分解试用改进的例DoolitteAxxxCholeskey6353212211142.2.3321例题TLDL
A1
1125.025.0111.7541125.025.01175.11.751141125.025.011125.075.175.125.01143125.075.175.125.01143225.02225.0114321221114例题Tybyyyyyy
yL)3,47,5(3,75.1,5635110.25125.01321321即得得由例题TTTxyxyxxxxxxDLD)3,2,1(1,2,33125.111125.025.0
1)3,1,45(12332111所以方程的解:得得,由而A=LDLT分解,既适合于解对称正定方程组,也适合求解
A为对称,而各阶顺序主子式不为零的方程组而对A=LLT只适合于对称正定方程组3.2.4三对角方程组求解的追赶法nnnnnijnnijabcabcabcaAaja
A11122211,01|i|)(即有,对一切设三对角矩阵三对角方程组求解的追赶法),...,3,2(1111,111111221132nicpaqqbpaqqcqcqcqpppALUDoolittleAiiiiiiinnnn
其中则有分解满足如果三对角方程组求解的追赶法),...,2(1111),...,,(1113213213221
niypfyfyffffyyyypppfffULAiiiinnnTnfyxfyfx解得,故有其中等价于求则求三对角方程组求解的追赶法组的追赶法。以上称为解三对角方程解得再由
)1,...,1(1121121112211niqxcyxqyxyyyyxxxxqcqcqcqiiiiinnnnn
nnnnn三对角方程组求解的追赶法其计算工作量为5n-4次乘除法。工作量小,其实现的条件为qi不为零。有以下定理可得证三对角矩阵求解的充分性条件。且追赶法可以实现。非奇异则矩阵,且满足形如设三对角矩阵定理,|||||,|||)3()
1,...,3,2(||||||)2(),...2,1(0)1(,11).2.3(2.2.311AabcbnicabnicAnniiii解三对角矩阵线性方程组的追赶法程序框图3.3矩阵求逆的解。个方程组的为单位向量,右端项分别均为问题等价
于求系数矩阵解存在,求的逆矩阵非奇异,则设矩阵),...,2,1()0,...,1,...,0,0(11njAnAAAAAjjTjjexe矩阵求逆这就是原地求逆。个单元,则可节省放的单元,最后仍用来存如果将个单元还是很困难的。很大时,这但当个存储单元即可实现,。
算法上增加了则)()(式即为顺序消去法知,求解上由初等变换21221||nAAnnnAXXIIAJordanGauss矩阵求逆111)()()()()()()(111...)(1)(1.
..1...:LLLAkiakiaallllLIALLLJordanGaussnnkkkkkkkikkikknkkkkkkKnn故其中消去法
矩阵形式由实现为使求逆过程不断提高求解精度,因此增加选主元工作,最常用的是选列主元求逆。因此增加一个数组Z(n),记录选主元的交换号,最后在消元工作完成后,根据Z(n)对A中的元素进行相应的列交换,得
到A-1Gauss—Jordan原地求逆法算法(原地求逆法));,...2,1()3(;,,0)2(;;;)(||max||)1(),...2,1.3);,...,2,1()(.2),...2,1,(.1njaathenklifDifa
Dilikzaankniiiznjialjkjlkkkiknikkiijk停机输入奇异标志;选主元:做对;输入:结束。输出:;做对),,...2,1,(.5);,...,2,1(thenif)(1,...,1.4);,,...,2,1()
7();,,,...,2,1,()6();,,...,2,1()5(;1)4(njianiaaktkZtnkkiniacakjkinjiaaaakjnjacaacaijitikikkikkjikijijkjkkjkkkkk例题。求逆矩阵设矩阵例112
21112211.3.3AA102011001520310221100010001122111221消去法解法一:JordanGauss例题原地求逆法解法二:所以得JordanGaussA
1203514611203514611000100011200110211003104011例题1125121210
2121121251121012112122111121121221111122213)1(1)1(AAczk例题212210212
512131121021251212112113)2(2)2(AAczk,,例题32320151361420125133142012512131123)3(3)3(AAczk
,,例题1203514611203514610211531643)1(3)2(13A
Azz所以,由与第三列交换第一列与第三列交换第二列