机自实验班-计算机辅助设计与制造总复习_免课件

PPT
  • 阅读 29 次
  • 下载 0 次
  • 页数 36 页
  • 大小 860.501 KB
  • 2022-12-01 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档20.00 元 加入VIP免费下载
此文档由【小橙橙】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
机自实验班-计算机辅助设计与制造总复习_免课件
可在后台配置第一页与第二页中间广告代码
机自实验班-计算机辅助设计与制造总复习_免课件
可在后台配置第二页与第三页中间广告代码
机自实验班-计算机辅助设计与制造总复习_免课件
可在后台配置第三页与第四页中间广告代码
机自实验班-计算机辅助设计与制造总复习_免课件
机自实验班-计算机辅助设计与制造总复习_免课件
还剩10页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 36
  • 收藏
  • 违规举报
  • © 版权认领
下载文档20.00 元 加入VIP免费下载
文本内容

【文档说明】机自实验班-计算机辅助设计与制造总复习_免课件.ppt,共(36)页,860.501 KB,由小橙橙上传

转载请保留链接:https://www.ichengzhen.cn/view-77256.html

以下为本文档部分文字说明:

TotalReviewofComputer-aidedDesignandManufacturingScoreAssessmentAttendance(10%)Rollcall5times(2markseachtime)courseerercises(15%)Courseexercises

3times(5markseachtime)Termpaper(25%)Examination(50%)2-houropenbookpaper(CAD90%plusCAM10%),Calculationproblemsandnouns

explainExaminationMaterialLecturenotesTutorialsandexercisesTeachingMaterial(MECHANICALENGINEERINGCAD/CAM)ReferencesbooksSurfacem

odellingforCAD/CAM,Chapter1-5,7Geometricmodelling,chapter9-10.TheCNCWorkshop(ver2),chapter1Chapter1:InstructionWha

tisCAD/CAM/CAE/CAPP?Howistherelationshipamongthem?)WhatistheHISTORYofCAD/CAM?HardwareandsoftwareofCAD/CAMsystem?WhatisGeometricModellinganditstypi

calapplications?Chapter2:CurvesFourcurvemodelsStandardpolynomialcurveFergusoncurveBeziercurveB-splinecurveCurvefittingPolynomialCurveM

odelsCurveSegmentDefinition:Acubicpolynomialcurvemodel:r(u)=a+bu+cu2+du3usedinrepresentingacurvesegment

isspecifiedbyitsendconditions,e.g.,(a)4points(P0,P1,P2andP3)or(b)twoendpointsP0andP1;twoendtangentst0andt1.P0P1P2P3niiiar0u(u)I

ngeneral,adegree-npolynomialcurvecanbeusedtofit(n+1)datapoints.FergusonCurveModelConstructingacurvesegment:JoiningtwoendpointsP0andP1

;Havingspecifiedendtangentst0andt1i.e.,P0=r(0);P1=r(1);t0=r’(0);t1=r’(1)P1P0t1t0r(u)r(u)=UA=UMVwith0u1BezierCurve

Modelwith0u1OnevaluatingtheBezierequationanditsderivativeatu=0,1r(0)=V0r(1)=Vnr’(0)=n(V1–V0)r’(1)=n(Vn–Vn-1)Bezierfoundafamilyoffunct

ionscalledBernsteinPolynomialsthatsatisfytheseconditions:BezierCurveModelCubic(n=3)BeziercurvemodelV0V1V2V3V3V2V1V0V2V1V0V3r

(u)=(1–u)3V0+3u(1–u)2V1+3u2(1–u)V2+u3V3r(u)==UMRr(0)=V0r’(0)=3(V1–V0)r(1)=V3r’(1)=3(V3–V2)Theshapeofthecurveresemblesthatofthecontrolpolygon.

B-splineModelwith0u1Ni,n(u)=TheprimaryfunctionB-splineModeldefinedbyn+1pointsViisgivenbytheWhereB-spl

ineModelQuadraticuniformB-splinemodelwithcontrolpointsV0,V1,andV2r(t)=½[t2t1]=U3M3P30≤t≤1CubicuniformB-splinemodelwithcontrolpointsV

0,V1,V2,andV3r(t)=1/6[u3u2u1]=U4M4P40≤t≤1ParametricContinuityConditionTwocurvesegmentsra(u)andrb(u)ra(1

)=P1=rb(0)(C0-continuous)ra’(1)=t1=rb’(0)(C1-continuous)ra’’(1)=rb’’(0)(C2-continuous)Collectivelycalledaparame

tricC2-condition.ThecompositecurvetopassthroughP0,P1,P2,andthetangentst0andt2areassumedtobegiven.Thus,theproblemhereistodeterminetheunknownt

1sothatthetwocurvesegmentsareC2-continuousatthecommonjoinP1.P0P1P2t2t0t1=?ra(u)rb(u)CubicSplineFitti

ng(FergusonModel)EmployingFergusoncurvemodelra(u)=UCSarb(u)=UCSbwith0u1U=[u3u2u1]C=1122123301000001Sa=[P0P1t0t1]TSb=[P1P2t1

t2]TApplyingC2continuity:ra’’(1)=6P0–6P1+2t0+4t1rb’’(0)=-6P1+6P2-4t1-2t2C0-continuityandC1-continuityalr

eadyappliedCubicSplineFitting(FergusonModel)ApplyingparametricC2-conditiont0+4t1+t2=3(P2–P0)Now,considerconstructingaC2-continuouscurvepassin

gthroughasequenceofn+1(P0toPn)pointsEndtangentst0andtnaregiven,inadditiontothe(n+1)points{Pi}.(Howmanycurvesegmen

ts???)Therearetotallyncurvesegments.Foreachpairofneighbouringcurvesegmentsri-1(u)andri(u),wehaveti-1+4ti+ti+1=3(P

i+1–Pi-1)fori=1,2,…,n–1B-splineModelOnevaluatingthecubicB-spline(k=4)anditsderivativeatt=1,0,r(0)=[4V1+(V0+V2)]/6

r(1)=[4V2+(V1+V3)]/6r’(0)=(V2–V0)/2r’(1)=(V3–V1)/2B-splinecurvesandBeziercurveshavemanyadvantagesincommonControlpoints

influencecurvesegmentshapeinapredictable,naturalway,makingthemgoodcandidatesforuseinaninteractivedesignenvironment.Bot

htypesofcurveareaxisindependent,multivalued,andbothexhibittheconvexhullproperty.B-splinecurveshaveadvantagesoverBe

ziercurves:Localcontrolofcurveshape.Theabilitytoaddcontrolpointswithoutincreasingthedegreeofthecurve.V0V1V3V

2CubicSplineFittingEstimationofendtangents,t0andtnCircularendconditionPolynomialendconditionFreeendconditionChapter3:S

urfacesFoursurfacepatchmodelsStandardpolynomialsurfacepatchFergusonsurfacepatchBeziersurfacepatchB-splinesurfa

cepatchThreeSurfaceConstructionMethodsTheFMILLmethodFergusonfittingmethodB-splinefittingmethodCurvedBoundaryInterpolati

ngSurfacePatchesStandardPolynomialPatchModelConsideravector-valuedpolynomialfunctionr(u,v)whosedegreesarecubic

inbothuandvwithcoefficientsdijfor(ui,vj).Thatisabi-cubic(standard)polynomialpatchdefinedasr(u,v)=with0u,v1whichcanbeexpressedinamatrixformasr(u

,v)=UDVTwhere,U=[u3u2u1],V=[v3v2v1],andthecoefficientsmatrixD=FergusonSurfacePatchModelSolvingthe16lineareq

uationsfortheunknowncoefficientsdijgivesusaFergusonpatchequation:r(u,v)=UDVT=UCQCTVTfor0u,v1C=Q=BezierSurfacePatchModelr(u,v)==UMBMTVT0u,v1

WhereM=B=ThematrixMiscalleda(cubic)Beziercoefficientmatrix,andBiscalledaBeziercontrolpointnetwhichformsacharacteristicpolyhedron.BezierSurfacePatchMo

delBezierpatchvs.FergusonPatchByevaluatingthecornerconditionsoftheBezierpatch,wehavethefollowingrelationships:Atu=0,v=0,r(0,0

)=V00s00=3(V10–V00)t00=3(V01–V00)x00=9(V00–V01–V10+V11)B-splineSurfacePatchModelConsidera44arrayofcontrolvertices{Vij}.r(u,v)==UNB

NTVTfor0u,v1N=SurfaceConstructionMethodsItisdesiredtouselowdegree(usuallycubic)polynomialpatchmodeltoformac

ompositesurface.Threemethodstobeintroduced:TheFMILLmethodFergusonfittingmethodB-splinefittingmethodB-SplineSurfaceFitt

ingComparisonbetweenFergusonfittingandB-splinefittingSamecompositesurfaceresultedWhenmakingfurtherc

hanges,localchangeforB-splinesurface,globalchangeforFergusonsurface.Question:Whenonecontrolpointischanged,howmanypatchesareaffected?CurvedBoundaryI

nterpolatingSurfacePatchesMethodsofconstructingasurfacepatchinterpolatingtoasetofboundarycurves:RuledsurfacesLoftedsurface

sCoonssurfacesTwotypesofsweepsurfacepatches:TranslationalsweeppatchesRotationalsweeppatchesRuledSurfacesConsi

dertwoparametriccurves,r0(u)andr1(u)with0u1(seefigure).Alinearblendingofthe2curvesdefinesasurfacepatc

hcalledaruledsurfacer(u,v)=r0(u)+v(r1(u)-r0(u));0u,v1Avectorinthedirectionofr1(u)-r0(u)iscalledaru

lingvectort(u).TranslationalSweepSurfacePatchesInputSummaryTwoparametricspacecurves,g(u)andd(v).Atranslationalsweepsurfaceisdef

inedbythetrajectoryofthecurveg(u)sweptalongthesecondcurved(v).Themovingcurveg(u)iscalledageneratorcurveTheguidingcurv

ed(v)iscalledadirectorcurver(u,v)=g(u)+d(v)-d(0)0u,v1r(u,v)g(u)RotationalSweepSurfacePatchesAlsoknownassurfaceofrevolution

Considerasectioncurves(u)onthex-zplanes(u)=x(u)i+z(u)k=(x(u),0,z(u))Rotatethesectioncurves(u)aboutthez-axis,theresultingsweepsurfa

cecanbeexpressedasanparametricequationas:r(u,)=(x(u)cos,x(u)sin,z(u))r(u,)Chapter4:SolidModellingTwosolidmodelrepresentationschemesGraph-

basedmodel(B-reps)Booleanmodel(CSG)EulerFormulaGraph-BasedModelsForsolidsrepresentedasplanar-facedpolyhedron,manysimplereprese

ntationschemesareavailable,e.g.,connectivitymatrixforpolyhedron.Connectivitymatrix(oradjacencymatrix):Abinarymatrix0-elementin

dicatesnoconnectivityexists1-elementsindicateconnectivityexistsbetweenthepairofelements(vertices,edges,orfaces).BooleanModel

sThebinarytreeforthismodelTheleafnodesaretheprimitivesolids,withBooleanoperatorsateachinternalnodeandtheroot.Eachinternalnodecom

binesthetwoobjectsimmediatelybelowitinthetree,and,ifnecessary,transformstheresultinreadinessforthenextoperation.

BasicConceptsofSolidModelEuler’slaw(orEuler’sformula)Foravalidsolid(polyhedron),thefollowingrelationshipmustbesatisfied:V–E+F-(L–F)=2–2H

V=NumberofverticesE=NumberofedgesF=NumberoffacesL=NumberofedgeloopsH=NumberofthroughholesThisexpressi

oncanalsobere-writtenas:V–E+F-R=2–2HWhereR=L–Fisthenumberofinterioredgeloops.ExternaledgeloopInterioredgeloopChapter7:Part

ProgrammingandManufacturingWhatisCNC/NC?Howabouttheircharacteristics?)WhatisCNC/MC/FMS/CIMS?Howistherelationshipamongthem?)Whatisth

ebasicconstructionforNCprogramming?HowtodeterminethecocrdinatesystemsofNCmachinetools?WhatisRP/RE?Howaboutth

eircharacteristics?)TipYoushouldpreparesufficientmaterials.Youshouldbringyourscientificcalculator,notyouri

Phone.Youmayneedaruler.Alloftheseformthescopeoftestinthefinalexam.ThefinaltipPractice,practice,andpractice…ThankyouWishyouforthebestgrades

!

小橙橙
小橙橙
文档分享,欢迎浏览!
  • 文档 25747
  • 被下载 7
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?