【文档说明】段辉高-10-现代CMOS工艺基本流程.pptx,共(80)页,599.354 KB,由精品优选上传
转载请保留链接:https://www.ichengzhen.cn/view-331808.html
以下为本文档部分文字说明:
1第十四章:CMOS基本工艺流程现代CMOS工艺基本流程2SiliconSubstrateP+~2um~725umSiliconEpiLayerP−选择衬底•晶圆的选择–掺杂类型(N或P)–电阻率(掺
杂浓度)–晶向•高掺杂(P+)的Si晶圆•低掺杂(P−)的Si外延层3SiliconSubstrateP+SiliconEpiLayerP−PadOxide热氧化•热氧化–形成一个SiO2薄层,厚度约20nm–高温,H2O或O2气氛–缓解后续步骤形成的Si3N4对Si衬底造成的应力4Silico
nSubstrateP+SiliconEpiLayerP-SiliconNitrideSi3N4淀积•Si3N4淀积–厚度约250nm–化学气相淀积(CVD)–作为后续CMP的停止层5SiliconSub
strateP+SiliconEpiLayerP-SiliconNitridePhotoresist光刻胶成形•光刻胶成形–厚度约0.5~1.0um–光刻胶涂敷、曝光和显影–用于隔离浅槽的定义6SiliconSubstrateP+Sili
conEpiLayerP-SiliconNitridePhotoresistSi3N4和SiO2刻蚀•Si3N4和SiO2刻蚀–基于氟的反应离子刻蚀(RIE)7SiliconSubstrateP+SiliconEpiLa
yerP-SiliconNitridePhotoresistTransistorActiveAreasIsolationTrenches隔离浅槽刻蚀•隔离浅槽刻蚀–基于氟的反应离子刻蚀(RIE)–定义晶体管有源区8SiliconSubstr
ateP+SiliconEpiLayerP-SiliconNitrideTransistorActiveAreasIsolationTrenches除去光刻胶•除去光刻胶–氧等离子体去胶,把光刻胶成分氧化为气体9SiliconSubstrateP+SiliconEpiLayerP
-SiliconNitrideFuturePMOSTransistorSiliconDioxideFutureNMOSTransistorNocurrentcanflowthroughhere!SiO2淀积•SiO2淀积–用氧化物填充隔离浅槽–
厚度约为0.5~1.0um,和浅槽深度和几何形状有关–化学气相淀积(CVD)10SiliconSubstrateP+SiliconEpiLayerP-SiliconNitrideFuturePMOSTransistorFutureNMOSTransistorNocurrentcanflowthro
ughhere!化学机械抛光•化学机械抛光(CMP)–CMP除去表面的氧化层–到Si3N4层为止11SiliconSubstrateP+SiliconEpiLayerP-FuturePMOSTransistorFutureNMOSTransistor除去Si3N4•除去Si3N4–热磷酸(H3PO
4)湿法刻蚀,约180℃12TrenchOxideCrossSectionBareSilicon平面视图•完成浅槽隔离(STI)13SiliconSubstrateP+SiliconEpiLayerP-FuturePMOSTransistorFutureNMOSTransisto
rPhotoresist光刻胶成形•光刻胶成形–厚度比较厚,用于阻挡离子注入–用于N-阱的定义14SiliconSubstrateP+SiliconEpiLayerP-FutureNMOSTransistorPho
toresistN-WellPhosphorous(-)Ions磷离子注入•磷离子注入–高能磷离子注入–形成局部N型区域,用于制造PMOS管15SiliconSubstrateP+SiliconEpiLayerP-
FutureNMOSTransistorN-Well除去光刻胶16PhotoresistSiliconSubstrateP+SiliconEpiLayerP-FutureNMOSTransistorN-Well光刻胶成形•光刻胶成形–厚度比较厚,用于阻挡离子注入–用于P-阱的定义17Sili
conSubstrateP+SiliconEpiLayerP-PhotoresistN-WellBoron(+)IonsP-Well•硼离子注入–高能硼离子注入–形成局部P型区域,用于制造NMOS管硼离子注入18SiliconSubstrateP+SiliconEpiL
ayerP-N-WellP-Well除去光刻胶19SiliconSubstrateP+SiliconEpiLayerP-P-WellN-Well退火•退火–在600~1000℃的H2环境中加热–修复离子注入造成的Si表面晶体损伤–注入
杂质的电激活–同时会造成杂质的进一步扩散–快速加热工艺(RTP)可以减少杂质的扩散20TrenchOxideN-WellP-WellCrossSection•完成N-阱和P-阱平面视图21SiliconSubstrateP+SiliconEpiLayerP-P-Well
N-WellSacrificialOxide牺牲氧化层生长•牺牲氧化层生长–厚度约25nm–用来捕获Si表面的缺陷22SiliconSubstrateP+SiliconEpiLayerP-P-WellN-Well除去牺牲氧化层•除去牺牲氧化层–H
F溶液湿法刻蚀–剩下洁净的Si表面23SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellGateOxide栅氧化层生长•栅氧化层生长–工艺中最关键的一步–厚度2~10nm–要求非常洁净,厚度精确(±1Å)–用作晶
体管的栅绝缘层24SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellPolysilicon多晶硅淀积•多晶硅淀积–厚度150~300nm–化学气相淀积(CVD)25SiliconSubstrateP+Silico
nEpiLayerP-P-WellN-WellPhotoresistChannelLengthPolysilicon光刻胶成形•光刻胶成形–工艺中最关键的图形转移步骤–栅长的精确性是晶体管开关速度的首要决定因素–使用最先进的曝光技术——深紫外光(DUV)–光刻胶厚度比其他步骤薄26SiliconS
ubstrateP+SiliconEpiLayerP-P-WellN-WellPhotoresistChannelLength多晶硅刻蚀•多晶硅刻蚀–基于氟的反应离子刻蚀(RIE)–必须精确的从光刻胶得到多晶硅的形状27SiliconSubstrateP+Sili
conEpiLayerP-P-WellN-WellGateOxidePolyGateElectrode除去光刻胶28TrenchOxideN-WellP-WellCrossSectionPolysilicon平面视图•完成栅极29SiliconSu
bstrateP+SiliconEpiLayerP-P-WellN-WellGateOxidePolyGateElectrodePolyRe-oxidation多晶硅氧化•多晶硅氧化–在多晶硅表面生长薄氧化层–用于缓冲隔离
多晶硅和后续步骤形成的Si3N430SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellPhotoresist光刻胶成形•光刻胶成形–用于控制NMOS管的衔接注入31SiliconSubstrateP+SiliconEpiLayerP-P
-WellN-WellPhotoresistArsenic(-)IonsNTipNMOS管衔接注入•NMOS管衔接注入–低能量、浅深度、低掺杂的砷离子注入–衔接注入用于削弱栅区的热载流子效应32SiliconSubstrateP+SiliconEpiLayerP-P-
WellN-WellNTip除去光刻胶33SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellPhotoresistNTip光刻胶成形•光刻胶成形–用于控制PMOS
管的衔接注入34SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellPhotoresistBF2(+)IonsNTipPTip•PMOS管衔接注入–低能量、浅
深度、低掺杂的BF2+离子注入–衔接注入用于削弱栅区的热载流子效应PMOS管衔接注入35SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellNTipPTip除去光刻胶36SiliconSubstrateP+
SiliconEpiLayerP-P-WellN-WellSiliconNitrideThinnerHereThickerHereNTipPTipPTipSi3N4淀积•Si3N4淀积–厚度120~180nm–CVD37SiliconSubstrateP+S
iliconEpiLayerP-P-WellN-WellSpacerSidewallNTipPTipPTipSi3N4刻蚀•Si3N4刻蚀–水平表面的薄层Si3N4被刻蚀,留下隔离侧墙–侧墙精确定位晶体管源区和漏区的离子注入–RIE38SiliconSubstrateP+SiliconEp
iLayerP-P-WellN-WellPhotoresistNTipPTip光刻胶成形•光刻胶成形–用于控制NMOS管的源/漏区注入39SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellPhotoresistArsenic(-
)IonsN+DrainN+SourcePTipNMOS管源/漏注入•NMOS管源/漏注入–浅深度、重掺杂的砷离子注入,形成了重掺杂的源/漏区–隔离侧墙阻挡了栅区附近的注入40SiliconSubstrateP+SiliconEpi
LayerP-P-WellN-WellN+DrainN+SourcePTip除去光刻胶41SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellN+DrainN+SourcePhotoresistPT
ip光刻胶成形•光刻胶成形–用于控制PMOS管的源/漏区注入42SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellBF2(+)IonsPhotoresistN+DrainN
+SourceP+SourceP+DrainPMOS管源/漏注入•PMOS管源/漏注入–浅深度、重掺杂的BF2+离子注入,形成了重掺杂的源/漏区–隔离侧墙阻挡了栅区附近的注入43SiliconSubstrat
eP+SiliconEpiLayerP-P-WellN-WellN+DrainN+SourceP+SourceP+DrainLightlyDoped“Tips”除去光刻胶和退火•除去光刻胶和退火–用RTP工艺,消除杂质在源/漏区的迁移44TrenchOxidePolysiliconCrossSec
tionN-WellP-WellN+Source/DrainP+Source/DrainSpacer平面视图•完成晶体管源/漏极,电子器件形成45SiliconSubstrateP+SiliconEpiLayerP-P-We
llN-WellN+DrainN+SourceP+DrainP+Source除去表面氧化物•除去表面氧化物–在HF溶液中快速浸泡,使栅、源、漏区的Si暴露出来46SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellN+DrainN+SourceP+
DrainP+SourceTitaniumTi淀积•Ti淀积–厚度20~40nm–溅射工艺–Ti淀积在整个晶圆表面47SiliconSubstrateP+SiliconEpiLayerP-P-WellN-W
ellN+DrainN+SourceP+DrainP+SourceTitaniumSilicideUnreactedTitaniumTiSi2形成•TiSi2形成–RTP工艺,N2气氛,800℃–在Ti和Si接触的区域,形成TiSi2–其他区域的Ti没有变化–称为自对准硅化物工艺(Salic
ide)48SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellN+DrainN+SourceP+DrainP+SourceTitaniumSilicideTi刻蚀•Ti刻蚀–NH4OH+H2O2湿法刻蚀–未参加反应的Ti被刻蚀–TiSi2保留下来,形成S
i和金属之间的欧姆接触49SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellN+DrainN+SourceP+DrainP+SourceBPSGBPSG淀积•硼磷硅玻璃(BPSG)淀积–CVD,厚度约1um–SiO2并掺杂少量硼和磷–改善薄膜的流
动性和禁锢污染物的性能–这一层绝缘隔离器件和第一层金属50SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellN+DrainN+SourceP+DrainP+SourceBPSGBPSG抛光•硼磷硅玻璃(BPSG)抛光–CMP–在BPSG层上获得一
个光滑的表面51SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellN+DrainN+SourceP+DrainP+SourceBPSGPhotoresist光刻胶成形•光刻胶成形–用于定义接触孔(Contact
s)–这是一个关键的光刻步骤52SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellN+DrainN+SourceP+DrainP+SourceBPSGPhotoresist接触孔刻蚀•接触
孔刻蚀–基于氟的RIE–获得垂直的侧墙–提供金属和底层器件的连接53SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellN+DrainN+SourceP+DrainP+SourceBPSG除去光刻胶54SiliconSubstrateP
+SiliconEpiLayerP-P-WellN-WellN+DrainN+SourceP+DrainP+SourceBPSGTitaniumNitrideTiN淀积•TiN淀积–厚度约20nm–溅射工艺–有助于后续的钨层附着在氧化层上55SiliconSubstrateP+Si
liconEpiLayerP-P-WellN-WellN+DrainN+SourceP+DrainP+SourceBPSGTitaniumNitrideTungsten钨淀积•钨淀积–CVD–厚度不少于接触孔直径的一半–填充接触孔56Silico
nSubstrateP+SiliconEpiLayerP-P-WellN-WellN+DrainN+SourceP+DrainP+SourceBPSGWContactPlug钨抛光•钨抛光–CMP–除去表面的钨和TiN–留下钨塞填充接触孔57TrenchOxidePolysilicon
CrossSectionN-WellP-WellN+Source/DrainP+Source/DrainSpacerContact平面视图•完成接触孔,多晶硅上的接触孔没有出现在剖面图上58SiliconSubstrateP+SiliconEpiLayerP-P-WellN-W
ellN+DrainN+SourceP+DrainP+SourceBPSGWContactPlugMetal1Ti(200Å)-electromigrationshuntTiN(500Å)-diffus
ionbarrierAl-Cu(5000Å)-mainconductorTiN(500Å)-antireflectivecoatingMetal1淀积•第一层金属淀积(Metal1)–实际上由多个不同的层组成–溅射工艺59
SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellN+DrainN+SourceP+DrainP+SourceBPSGWContactPlugMetal1Photoresist光刻胶成形•光刻胶成形–用于定义Metal1互连60SiliconSubst
rateP+SiliconEpiLayerP-P-WellN-WellN+DrainN+SourceP+DrainP+SourceBPSGWContactPlugMetal1PhotoresistMetal1刻蚀•Metal1刻蚀–基于氯的RIE–由于Metal1由多层金属组成,所以需要多个刻蚀步
骤61SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellN+DrainN+SourceP+DrainP+SourceBPSGWContactPlugMetal1除去光刻胶62TrenchOxidePolysiliconCrossSectionN-
WellP-WellN+Source/DrainP+Source/DrainSpacerContactMetal1平面视图•完成第一层互连63SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellN+DrainN+SourceP+DrainP+Sou
rceBPSGWContactPlugMetal1IMD1IMD淀积•金属间绝缘体(IMD)淀积–未掺杂的SiO2–连续的CVD和刻蚀工艺,厚度约1um–填充在金属线之间,提供金属层之间的绝缘隔离64SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellN
+DrainN+SourceP+DrainP+SourceBPSGWContactPlugMetal1IMD1IMD抛光•IMD抛光–CMP65SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellN+DrainN+Sour
ceP+DrainP+SourceBPSGWContactPlugMetal1IMD1Photoresist光刻胶成形•光刻胶成形–用于定义通孔(Vias)66SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellN+Drai
nN+SourceP+DrainP+SourceBPSGWContactPlugMetal1PhotoresistIMD1通孔刻蚀•通孔刻蚀–基于氟的RIE,获得垂直的侧墙–提供金属层之间的连接67SiliconSubstrateP+SiliconEpiLa
yerP-P-WellN-WellN+DrainN+SourceP+DrainP+SourceBPSGWContactPlugMetal1IMD1除去光刻胶68TungstenSiliconSubstrateP+SiliconEpiLayerP-P
-WellN-WellN+DrainN+SourceP+DrainP+SourceBPSGWContactPlugMetal1IMD1WViaPlugTiN和钨淀积•TiN和钨淀积–同第一层互连69Sili
conSubstrateP+SiliconEpiLayerP-P-WellN-WellN+DrainN+SourceP+DrainP+SourceBPSGWContactPlugMetal1IMD1WV
iaPlug钨和TiN抛光•钨和TiN抛光–同第一层互连70TrenchOxidePolysiliconCrossSectionN-WellP-WellN+Source/DrainP+Source/DrainSpacerContactMeta
l1Via1平面视图•完成通孔71SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellN+DrainN+SourceP+DrainP+SourceBPSGWContactPlugMetal1IMD1WViaPlugMetal
2Metal2淀积•Metal2淀积–类似于Metal1–厚度和宽度增加,连接更长的距离,承载更大的电流72SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellN
+DrainN+SourceP+DrainP+SourceBPSGWContactPlugMetal1PhotoresistIMD1WViaPlugMetal2光刻胶成形•光刻胶成形–相邻的金属层连线方向垂直,减小层间的感应耦合73SiliconSubstrat
eP+SiliconEpiLayerP-P-WellN-WellN+DrainN+SourceP+DrainP+SourceBPSGWContactPlugMetal1PhotoresistIMD1WViaPlugMetal2Metal2刻蚀•Metal2刻蚀–类似于Metal17
4SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellN+DrainN+SourceP+DrainP+SourceBPSGWContactPlugMetal1IMD1WViaPlugMetal2除去光刻胶75TrenchOxidePoly
siliconCrossSectionN-WellP-WellN+Source/DrainP+Source/DrainSpacerContactMetal1Via1Metal2平面视图•完成第二层互连,后面的剖面图将包括右上角的压焊点76Sili
conSubstrateP+SiliconEpiLayerP-P-WellN-WellN+DrainN+SourceP+DrainP+SourceBPSGWContactPlugMetal1IMD1WViaPlugPassivationMetal
2钝化层淀积•钝化层淀积–多种可选的钝化层,Si3N4、SiO2和聚酰亚胺等–保护电路免受刮擦、污染和受潮等77SiliconSubstrateP+SiliconEpiLayerP-P-WellN-WellN+DrainN
+SourceP+DrainP+SourceBPSGWContactPlugMetal1IMD1WViaPlugPassivationBondPadPolyGateGateOxideSilicideSpacerMetal2钝化层成形•钝化层成形–
压焊点打开,提供外界对芯片的电接触78CrossSectionTrenchOxideN+Source/DrainP+Source/DrainSpacerContactMetal1PolysiliconVia1+
5VSupplyVOUTN-WellP-WellMetal2GroundBondPadVIN平面视图•完成,显示了电气连接和部分压焊点79完成80略有不同的另一个工艺流程Vth校正注入场氧化层TiN