【文档说明】PCB讲座(高频).pptx,共(38)页,187.991 KB,由精品优选上传
转载请保留链接:https://www.ichengzhen.cn/view-296205.html
以下为本文档部分文字说明:
PCB布局布线讲座——高频系列讲座一、元件布局基本规则•1.按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开。•2.遵照“先大后小,先难后易”等的布置原则,即重要的单元电路、核心元器件应当优先布局。•3.布局中应参
考原理框图,根据单板的主信号流向规律安排主要元器件。•4.布局应该尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流、低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与
低频信号分开;高频元器件的间隔要充分。•5.相同结构电路部分,尽可能采用“对称式”标准布局。•6.同类型插装元器件在X或Y方向上应朝一个方向,同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于焊接和检验,但是空心电感除外。•7.IC去耦电容的布局要尽量靠近IC的电源管脚,并使之与
电源和地之间形成的回路最短。•8.元件布局时,应适当考虑使用同一种电源的器件尽量放在一起,以便于将来的电源分割。•9.发热元件不能紧邻导线和热敏元件;高热器件要均衡分布。•10.重要信号线不准从插座脚间穿
过。11.电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔。二、PCB布线规则•1、画定布线区
域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线。•2、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。•3、地线回路规则:•环路最小规则,即信号线与其回路构成的环面积要尽可能小,环面积越小,对外的辐射越少,接收外界的干扰也越小。•4、串扰控制•串
扰是指PCB上不同网络之间因较长的平行布线引起的相互干扰,主要是由于平行线间的分布电容和分布电感的作用。克服串扰的主要措施是:•加大平行布线的间距,遵循3W规则。•在平行线间插入接地的隔离线。减小布线层与地平面的距离。•5、走线
的方向控制规则:•相邻层的走线方向成正交结构。避免将不同的信号线在相邻层走成同一方向,以减少不必要的层间串扰;特别是信号速率较高时,应考虑用地平面隔离各布线层,用地信号线隔离各信号线。作为电路的输入及输出用的印制导线应尽量避免相邻平行,以免发生回授,在这些导线之间最好加接地线。•6、走线的开
环检查规则:•一般不允许出现一端浮空的布线,主要是为了避免产生“天线效应”,减少不必要的干扰辐射和接收,否则可能带来不可预知的结果。•7、阻抗匹配检查规则:•同一网络的布线宽度应保持一致,线宽的变化会造成线路特性阻抗的不均匀,当传输的速度较高时会产生反射,在设计中应该尽量避免这种情况。在某些
条件下,如接插件引出线,可能无法避免线宽的变化,应该尽量减少中间不一致部分的有效长度。•8、走线的谐振规则:•主要针对高频信号设计而言,即布线长度不得与其波长成整数倍关系,以免产生谐振现象。•9、走线长度控制规则:•即短线规则,在设计时应该尽量让布线长
度尽量短,以减少由于走线过长带来的干扰问题,特别是一些重要信号线,如时钟线,务必将其振荡器放在离器件很近的地方。•10、倒角规则:•PCB设计中应避免产生锐角和直角,产生不必要的辐射,同时工艺性能也不好。在布线中尽量采用1
35度拐角,•11、器件布局分区/分层规则:•主要是为了防止不同工作频率的模块之间的互相干扰,同时尽量缩短高频部分的布线长度。通常将高频的部分布设在接口部分以减少布线长度。同时还要考虑到高/低频部分地平面的分割问题,通常采用将二者的地分割,再在接
口处单点相接。•对混合电路,也有将模拟与数字电路分布布置在印制板的两面,分别使用不同的层布线,中间用地层隔离的方式。•12、孤立铜区控制规则:•孤立铜区的出现,将带来一些不可预知的问题,因此将孤立铜区与别的信号相接,有助于改善信号质量,通常是将孤立铜区接地或删除。•13、3W规则:
•为了减少线间串扰,应保证导线间距足够大,当导线中心间距不少于3倍线宽时,则可保持70%的电场不互相串扰,如要达到98%的电场不互相干扰,可使用10W间距。在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距。14.印制导线的宽度:导线宽度应以能
满足电气性能要求而又便于生产为宜,它的最小值以承受的电流大小而定,但最小不宜小于0.2mm,在高密度、高精度的印制线路中,导线宽度和间距一般可取0.3mm;导线宽度在大电流情况下还要考虑其温升,单面板实验表明,当铜箔厚度为50μm、导线宽度
1~1.5mm、通过电流2A时,温升很小,因此,一般选用1~1.5mm宽度导线就可能满足设计要求而不致引起温升;印制导线的公共地线应尽可能地粗,可能的话,使用大于2~3mm的线条,这点在带有微处理器的电路中尤为重要,因为当地线过细时,由于流过的电流的变化,地电位变动,微处理器定时
信号的电平不稳,会使噪声容限劣化;在DIP封装的IC脚间走线,可应用10-10与12-12原则,即当两脚间通过2根线时,焊盘直径可设为50mil、线宽与线距都为10mil,当两脚间只通过1根线时,焊盘直径可设为64mil、线宽与线距
都为12mil。15.印制导线的屏蔽与接地:印制导线的公共地线,应尽量布置在印制线路板的边缘部分。在印制线路板上应尽可能多地保留铜箔做地线,这样得到的屏蔽效果,比一长条地线要好,传输线特性和屏蔽作用将得到改善,另外起到了减小分
布电容的作用。印制导线的公共地线最好形成网状,这是因为当在同一块板上有许多集成电路,特别是有耗电多的元件时,由于图形上的限制产生了接地电位差,从而引起噪声容限的降低,当做成回路时,接地电位差减小。另外,接地和电源
的图形尽可能要与数据的流动方向平行,这是抑制噪声能力增强的秘诀;多层印制线路板可采取其中若干层作屏蔽层,电源层、地线层均可视为屏蔽层,一般地线层和电源层设计在多层印制线路板的内层,信号线设计在内层和外层。三、布线规范由于电源层与地层之间的电场是变化的,在板的边缘会向外辐
射电磁干扰。称为边沿效应。解决的办法是将电源层内缩,使得电场只在接地层的范围内传导。以一个H(电源和地之间的介质厚度)为单位,若内缩20H则可以将70%的电场限制在接地层边沿内;内缩100H则可以将98%的电场限制
在内。为了减少线间串扰,应保证线间距足够大,当线中心间距不少于3倍线宽时,则可保持70%的电场不互相干扰,称为3W规则。如要达到98%的电场不互相干扰,可使用10W的间距。四、高频布线的一些基本概念1、什么是电磁干扰(EMI)和电磁兼
容性(EMC)?电磁干扰(ElectromagneticInterference)有传导干扰和辐射干扰两种。传导干扰是指通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络。辐射干扰是指干扰源通过空间把其信号耦合(干扰)到另一个电网络
。在高速PCB及系统设计中,高频信号线、集成电路的引脚、各类接插件等都可能成为具有天线特性的辐射干扰源,能发射电磁波并影响其他系统或本系统内其他子系统的正常工作。2、什么是信号完整性(signalintegrity)?信号完整性是指信号在信号线上
的质量。信号具有良好的信号完整性是指当在需要的时候,具有所必需达到的电压电平数值。差的信号完整性不是由某一单一因素导致的,而是板级设计中多种因素共同引起的。主要的信号完整性问题包括反射、振荡、地弹、串扰等。3、什么是串扰(crosstalk)?串扰是两
条信号线之间的耦合,信号线之间的互感和互容引起线上的噪声。容性耦合引发耦合电流,而感性耦合引发耦合电压。PCB板层的参数、信号线间距、驱动端和接收端的电气特性及线端接方式对串扰都有一定的影响。4、什么是反射(reflection)?反射就是在传输线上的回波。信号功率(电压和电流)的一部分传输到线
上并达到负载处,但是有一部分被反射了。如果源端与负载端具有相同的阻抗,反射就不会发生了。源端与负载端阻抗不匹配会引起线上反射,负载将一部分电压反射回源端。如果负载阻抗小于源阻抗,反射电压为负;如果负载阻抗大于源阻抗,反射电压为正。布线的几何形状、不正确的线端接
、经过连接器的传输及电源平面的不连续等因素的变化均会导致此类反射。5、什么是地电平面反弹噪声和回流噪声?在电路中有大的电流涌动时会引起地平面反弹噪声(简称为地弹),如大量芯片的输出同时开启时,将有一个较大的瞬态电流在芯片与板的电源平面流过,芯片封装与电源平面的电感和电阻会引发电源
噪声,这样会在真正的地平面(0V)上产生电压的波动和变化,这个噪声会影响其他元器件的动作。负载电容的增大、负载电阻的减小、地电感的增大、同时开关器件数目的增加均会导致地弹的增大。由于地电平面(包括电源和地)分割,例如地层被分割为
数字地、模拟地、屏蔽地等,当数字信号走到模拟地线区域时,就会产生地平面回流噪声。同样电源层也可能会被分割为2.5V,3.3V,5V等。所以在多电压PCB设计中,地电平面的反弹噪声和回流噪声需要特别关心。五、RF电路设计方法与特点(一)PCB电路板设计要求1、最短信号连接设计——“水滴型布线”
2、严禁高频信号线锐角走线3、电路中应加入分布结构的退耦滤波电路4、按照信号走向布线,严禁大小信号交叉和分布参数产生正反馈5、尽量大面积接地—“铺铜”高频电路板设计举例-高频放大器高频电路板设计举例-FM话筒六、高频布线规范1、高频电路往
往集成度较高,布线密度大,采用多层板既是布线所必须的,也是降低干扰的有效手段。Protel99SE能提供16机械层和16内部信号层,合理选择层数能大幅度降低印板尺寸,能充分利用中间层来设置屏蔽,能更好地实现就近接地,能有效地降低寄生电感,能有效缩短信号的传输长度,能大幅度地降低信号间的交叉干
扰等等,所有这些都对高频电路的可靠工作有利。有资料显示,同种材料时,四层板要比双面板的噪声低20dB。但是,板层数越高,制造工艺越复杂,成本越高。2、高速电路器件管脚间的引线弯折越少越好。高频电路布线的引线最好采用全直线,需要转折,可用45度折线或圆弧转折,这种要求在低频电路中
仅仅用于提高钢箔的固着强度,而在高频电路中,满足这一要求却可以减少高频信号对外的发射和相互间的耦合。用Protel布线时可在预先设置,选择“Design”菜单下的“Rules”,找到“RoutingCorners”,双击打开,把系
统默认的“90Degrees”改为“Rounded”,以便自动布线结束时使转角圆弧化。3、高频电路器件管脚间的引线越短越好。Protel满足布线最短化的最有效手段是在自动市线前对个别重点的高速网络进行
“布线”预约。首先,打开“Netlst”菜单的“EditNet”子菜单,会出现一个“ChangeNet”对话框,把此对话框中的“OptimizeMethod(布线优化模式)”选为“Shortest(最短化)”Rp可。其次,从整体考虑,元件布局时用“Auto”中Placeme
ntTools-Shove’和“Auto”中的“Density(密度检查)”来对比调整,使元件排列紧凑,并配合“Netlist”菜单中的“Length”功能和“Info”菜单中的Lengthofselectio
n”功能,对所选定的需最短化的重点网络进行布线长度测量。4、高频电路器件管脚间的引线层间交替越少越好。所谓“引线的层间交替越少越好”是指元件连接过程中所用的过孔(Via)越少越好,据测,一个过孔可带来约0.5pF的分布电容,减少过孔数能显著提高速度。5、高频电路
布线要注意信号线近距离平行走线所引入的“交叉干扰”,若无法避免平行分布,可在平行信号线的反面布置大面积“地”来大幅度减少干扰。同一层内的平行走线几乎无法避免,但是在相邻的两个层,走线的方向务必取为相互垂直,这在Protel中不难办到但却容易忽视。在
“Auto”菜单的“SetupAutorouter…项所打开的RoutingLagers对话框中允许对每一层的走线方向进行预定。6、对特别重要的信号线或局部单元实施地线包围的措施。该措施在Protel软件中也能自动实现,它就是
“Place”菜单的“Polygonplane….”下的“NoHatching”,即:绘制所选对象的外轮廓线。利用此功能,可以自动地对所选定的重要信号线进行所谓的“包地”处理,当然,把此功能用于时钟等
单元局部进行包地处理对高速系统也将非常有益。7、各类信号走线不能形成环路,地线也不能形成电流环路。Protel自动布线的走线原则除了前面所讲的最短化原则外,还有基于X方向、基于Y方向和菊花状(daisy)走线方式,采用菊花状走线能有效避免布线时形成环路。具体方法是打开“Desig
n”菜单下的“Rules”子菜单,出现一个“RoutingTopology”对话框,双击选择“DaisyMidDriven”即可。8、每个集成电路块的附近应设置一个高频退耦电容。由于Protel软件在自动放置元件时并不考虑退
耦电容与被退耦的集成电路间的位置关系,任由软件放置,使两者相距太远,退耦效果大打折扣,这时必须用手工移动元件(“Edit”、“Move”“component”)的办法事先干预两者位置,使之靠近。9、模拟
地线、数字地线等接往公共地线时要用高频扼流环节。在实际装配高频扼流环节时用的往往是中心孔穿有导线的高频铁氧体磁珠,在电路原理图上对它一般不予表达,由此形成的网络表(netlist)就不包含这类元件,布线时就会因此而忽略它的存在。针对
此现实,可在原理图中把它当作电感,在PCB元件库中单独为它定义一个元件封装,布线前把它手工移动到靠近公共地线汇合点的合适位置上。10、模拟电路与数字电路应分开布置,独立布线后应单点连接电源和地,避免相互干扰。11、片外程序存储器和数据存储器应尽量
靠近DSP芯片放置,同时要合理布局,使数据线和地址线长短基本保持一致,尤其当系统中有多片存储器时要考虑时钟线到各存储器的时钟输入距离相等或可以加单独的可编程时钟驱动芯片。对于DSP系统而言,应选择存取速度与DSP相仿的外部存储器,不然DSP的高速处理能力将不能充分发挥。DSP指令周期为
纳秒级,因而DSP硬件系统中最易出现的问题是高频干扰,因此在制作DSP硬件系统的印制电路板(PCB)时,应特别注意对地址线和数据线等重要信号线的布线要做到正确合理。布线时尽量使高频线短而粗,且远离易受干扰的信号线,如模拟信号线等。当DSP周围电路较复杂时,
建议将DSP及其时钟电路、复位电路、片外程序存储器、数据存储器制作成最小系统,以减少干扰。12、DSP、片外程序存储器和数据存储器接入电源前,应加滤波电容并使其尽量靠近芯片电源引脚,以滤除电源噪声。另外,在DSP与片外程序存储器和数据存储器等关键部分周围建议屏蔽,可减少外界干
扰。13、当本着以上原则,熟练设计工具的使用技巧以后,经过手工布线完成后,高频电路为了提高系统的靠性和可生产性,一般都需要利用高级的PCB仿真软件进行仿真。