第三章矿井风流的阻力下载-矿井通风安全工程

PPT
  • 阅读 96 次
  • 下载 0 次
  • 页数 41 页
  • 大小 287.984 KB
  • 2023-07-25 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档22.00 元 加入VIP免费下载
此文档由【精品优选】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
第三章矿井风流的阻力下载-矿井通风安全工程
可在后台配置第一页与第二页中间广告代码
第三章矿井风流的阻力下载-矿井通风安全工程
可在后台配置第二页与第三页中间广告代码
第三章矿井风流的阻力下载-矿井通风安全工程
可在后台配置第三页与第四页中间广告代码
第三章矿井风流的阻力下载-矿井通风安全工程
第三章矿井风流的阻力下载-矿井通风安全工程
还剩10页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 41
  • 收藏
  • 违规举报
  • © 版权认领
下载文档22.00 元 加入VIP免费下载
文本内容

【文档说明】第三章矿井风流的阻力下载-矿井通风安全工程.pptx,共(41)页,287.984 KB,由精品优选上传

转载请保留链接:https://www.ichengzhen.cn/view-291581.html

以下为本文档部分文字说明:

第三章矿井风流的阻力•本章重点和难点:•摩擦阻力和局部阻力产生的原因和测算第三章矿井风流的阻力当空气沿井巷运动时,由于风流的粘滞性和惯性以及井巷壁面等对风流的阻滞、扰动作用而形成通风阻力,它是造成风流能量损失的原因。井巷通风阻力可分为两类:摩擦阻力(也称为沿程阻力

)和局部阻力。第一节阻力定律一、风流流态1、管道流同一流体在同一管道中流动时,不同的流速,会形成不同的流动状态。当流速较低时,流体质点互不混杂,沿着与管轴平行的方向作层状运动,称为层流(或滞流)。当流速较大时,流体质点的运动速度在大小和方向上都随时发生变化,成为互相混杂的紊乱流动,称为紊流

(或湍流)。(1)雷诺数-Re式中:平均流速v、管道直径d和流体的运动粘性系数。在实际工程计算中,为简便起见,通常以Re=2300作为管道流动流态的判定准数,即:Re≤2300层流,Re>2300紊流(2)当量直径对于非圆形断面的井巷,Re数中的管道直径d应以井巷

断面的当量直径de来表示:因此,非圆形断面井巷的雷诺数可用下式表示:vdRe=USde4=UvSRe4=对于不同形状的井巷断面,其周长U与断面积S的关系,可用下式表示:式中:C—断面形状系数:梯形C=4.16;三心拱C=3.85;半圆拱C=3.90。(举例

见P38)2、孔隙介质流在采空区和煤层等多孔介质中风流的流态判别准数为:式中:K—冒落带渗流系数,m2;l—滤流带粗糙度系数,m。层流,Re≤0.25;紊流,Re>2.5;过渡流0.25<Re<2.5SCU=lvKRe=二、井巷断面上风速分布(1)紊流脉动风流中各点的流速、压力等物理参数随时

间作不规则(2)时均速度瞬时速度vx随时间τ的变化。其值虽然不断变化,但在一足够长的时间段T内,流速vx总是围绕着某一平均值上下波动。Tvxvxt(3)巷道风速分布由于空气的粘性和井巷壁面摩擦影响,井巷断面上风速分布是不均

匀的。层流边层:在贴近壁面处仍存在层流运动薄层,即层流边层。其厚度δ随Re增加而变薄,它的存在对流动阻力、传热和传质过程有较大影响。在层流边层以外,从巷壁向巷道轴心方向,风速逐渐增大,呈抛物线分布。平均风速:式中:

巷道通过风量Q。则:Q=V×S=SiSvSvd1SiSvdδvvmaxvmax风速分布系数:断面上平均风速v与最大风速vmax的比值称为风速分布系数(速度场系数),用Kv表示:巷壁愈光滑,Kv值愈大,即断

面上风速分布愈均匀。砌碹巷道,Kv=0.8~0.86;木棚支护巷道,Kv=0.68~0.82;无支护巷道,Kv=0.74~0.81。maxvvKv=第二节矿井通风阻力一、摩擦阻力风流在井巷中作沿程流动时,由于流体层间的摩擦和流体与井巷壁面之间的摩擦所形成的阻力称为摩擦阻力(也叫沿程阻

力)。由流体力学可知,无论层流还是紊流,以风流压能损失来反映的摩擦阻力可用下式来计算:Paλ-无因次系数,即摩擦阻力系数,通过实验求得。d—圆形风管直径,非圆形管用当量直径;2·2vdLhf=1.尼古拉兹实验实际流体

在流动过程中,沿程能量损失一方面(内因)取决于粘滞力和惯性力的比值,用雷诺数Re来衡量;另一方面(外因)是固体壁面对流体流动的阻碍作用,故沿程能量损失又与管道长度、断面形状及大小、壁面粗糙度有关。其中壁面粗糙度的影响通过λ值来反映

。1932~1933年间,尼古拉兹把经过筛分、粒径为ε的砂粒均匀粘贴于管壁。砂粒的直径ε就是管壁凸起的高度,称为绝对糙度;绝对糙度ε与管道半径r的比值ε/r称为相对糙度。以水作为流动介质、对相对糙度分别为1/15、1/30.6、1/60、1/126、1/2

56、1/507六种不同的管道进行试验研究。对实验数据进行分析整理,在对数坐标纸上画出λ与Re的关系曲线,如图3-2-1所示。结论分析:Ⅰ区——层流区。当Re<2320(即lgRe<3.36)时,不论管

道粗糙度如何,其实验结果都集中分布于直线Ⅰ上。这表明λ与相对糙度ε/r无关,只与Re有关,且λ=64/Re。与相对粗糙度无关。Ⅱ区——过渡流区。2320≤Re≤4000(即3.36≤lgRe≤3.6),在此

区间内,不同相对糙度的管内流体的流态由层流转变为紊流。所有的实验点几乎都集中在线段Ⅱ上。λ随Re增大而增大,与相对糙度无明显关系。Ⅲ区——水力光滑管区。在此区段内,管内流动虽然都已处于紊流状态(Re>4000),但在一定的

雷诺数下,当层流边层的厚度δ大于管道的绝对糙度ε(称为水力光滑管)时,其实验点均集中在直线Ⅲ上,表明λ与ε仍然无关,而只与Re有关。随着Re的增大,相对糙度大的管道,实验点在较低Re时就偏离直线Ⅲ,而相对糙度小的管道要在Re较大时才偏离直线Ⅲ。Ⅳ区——紊流过渡区,即图中Ⅳ所示区段。在这个区段内,各

种不同相对糙度的实验点各自分散呈一波状曲线,λ值既与Re有关,也与ε/r有关。δεⅤ区——水力粗糙管区。在该区段,Re值较大,管内液流的层流边层已变得极薄,有ε>>δ,砂粒凸起高度几乎全暴露在紊流核心中,故Re对λ值的影

响极小,略去不计,相对糙度成为λ的唯一影响因素。故在该区段,λ与Re无关,而只与相对糙度有关。摩擦阻力与流速平方成正比,故称为阻力平方区,尼古拉兹公式:2lg274.11+=r2.层流摩擦阻力当流体在圆形管道中作层流流动时,从理论上可以导出摩擦阻力计算式:∵μ=ρ·ν∴可得圆管

层流时的沿程阻力系数:古拉兹实验所得到的层流时λ与Re的关系,与理论分析得到的关系完全相同,理论与实验的正确性得到相互的验证。层流摩擦阻力和平均流速的一次方成正比。vdLhf232=VdRe=2··642vdLRehf=Re64=3、紊流摩擦阻力

对于紊流运动,λ=f(Re,ε/r),关系比较复杂。用当量直径de=4S/U代替d,代入阻力通式,则得到紊流状态下井巷的摩擦阻力计算式:4.摩擦风阻Rf对于已给定的井巷,L、U、S都为已知数,故可把上式中的α、L、U、S归结为一个参数Rf:Rf称为巷道的摩擦风阻,其单位为:

kg/m7或N.s2/m8。工程单位:kgf.s2/m8,或写成:kμ。1N.s2/m8=9.8kμ23288QSLUvSLUhf==3SLURf=Rf=f(ρ,ε,S,U,L)。在正常条件下当某一段井巷中的空气密度ρ一般变化不大时,可将Rf

看作是反映井巷几何特征的参数。则得到紊流状态下井巷的摩擦阻力计算式写为:此式就是完全紊流(进入阻力平方区)下的摩擦阻力定律。5.井巷摩擦阻力计算方法新建矿井:查表得α0αRfhf生产矿井:hfRfαα02QRhff=6.生产矿井一段巷道阻力测定(1)、压差计法用压差计法测定通风阻力

的实质是测量风流两点间的势能差和动压差,计算出两测点间的通阻力。其中:右侧的第二项为动压差,通过测定1、2两断面的风速、大气压、干湿球温度,即可计算出它们的值。第一项和第三项之和称为势能差,需通过实际

测定。1)布置方式及连接方法()()2m21m122212121Rgg2v2vPPhZZ−+−+−z1z212212)阻力计算压差计“+”感受的压力:压差计“-”感受的压力:故压差计所示测值:设且与1、2断面间巷道中空气平均密度相等,则:式中:Z12为1、2断面

高差,h值即为1、2两断面压能与位能和的差值。根据能量方程,则1、2巷道段的通风阻力hR12为:把压差计放在1、2断面之间,测值是否变化?)(2111ZZgPm++222ZPm+1222211)(ZZZZmmm

=−+gZPPhm1221)(+−=vvhhR2222111222−+=)()(2222111gZPZZgPhmm+−++=(2)、气压计法由能量方程:hR12=(P1-P2)+(1v12/2-2v22/2)+m12gZ12用精密气压计分别测得1,2断面的静压P1,P

2用干湿球温度计测得t1,t2,t1’,t2’,和1,2,进而计算1,2用风表测定1,2断面的风速v1,v2。m12为1,2断面的平均密度,若高差不大,就用算术平均值,若高差大,则有加权平均值;Z12—

—1,2断面高差,从采掘工程平面图查得。可用逐点测定法,一台仪器在井底车场监视大气压变化,然后对上式进行修正。hR12=(P1-P2)+P12(+(1v12/2-2v22/2)+m12gZ12例题3-3某设计巷道为梯形断面,S=8m2,L=1000m,采用工字钢棚支护,支架截面

高度d0=14cm,纵口径Δ=5,计划通过风量Q=1200m3/min,预计巷道中空气密度ρ=1.25kg/m3,求该段巷道的通风阻力。解根据所给的d0、Δ、S值,由附录4附表4-4查得:α0=284.2×1

0-4×0.88=0.025Ns2/m4则:巷道实际摩擦阻力系数Ns2/m4巷道摩擦风阻巷道摩擦阻力026.02.125.1025.02.10===Ns2/m80.598877.111000026.06.4333====SSLSLURfPaQRhff2.2396

01200598.022===二、局部阻力1.局部阻力及其计算由于井巷断面、方向变化以及分岔或汇合等原因,使均匀流动在局部地区受到影响而破坏,从而引起风流速度场分布变化和产生涡流等,造成风流的能量损失,这种阻力称为局部阻力。由于局部阻力所产生

风流速度场分布的变化比较复杂性,对局部阻力的计算一般采用经验公式。和摩擦阻力类似,局部阻力hl一般也用动压的倍数来表示:式中:ξ——局部阻力系数,无因次。层流ξ计算局部阻力,关键是局部阻力系数确定,因v=Q/S,当ξ确定后,便可用22vhl=ReB=222Q

Shl=几种常见的局部阻力产生的类型:(1)、突变紊流通过突变部分时,由于惯性作用,出现主流与边壁脱离的现象,在主流与边壁之间形成涡漩区,从而增加能量损失。(2)、渐变主要是由于沿流动方向出现减速增压现象,在

边壁附近产生涡漩。因为Vhvp,压差的作用方向与流动方向相反,使边壁附近,流速本来就小,趋于0,在这些地方主流与边壁面脱离,出现与主流相反的流动,面涡漩。(3)、转弯处流体质点在转弯处受到离心力作用,在外侧出现减速增压,出现涡漩。(4)、分岔与会合上述的综合。∴局部阻力的产生主要是与涡漩

区有关,涡漩区愈大,能量损失愈多,局部阻力愈大。2.局部阻力系数ξ紊流局部阻力系数ξ一般主要取决于局部阻力物的形状,而边壁的粗糙程度为次要因素。(1).突然扩大或式中:v1、v2——分别为小断面和大断面的平均流速,m/s;S1、S2

——分别为小断面和大断面的面积,m;ρm——空气平均密度,kg/m3。对于粗糙度较大的井巷,可进行修正2211211222122211QSvvSShl==−=2222222222122221QSvvSShl==

−=+=01.01(2).突然缩小对应于小断面的动压,ξ值可按下式计算:(3).逐渐扩大逐渐扩大的局部阻力比突然扩大小得多,其能量损失可认为由摩擦损失和扩张损失两部分组成。当Θ<20°时,渐扩段的局部阻力系数ξ可用下式求算:式中α—风道的摩擦阻力系数,N

s2/m4;n—风道大、小断面积之比,即S2/S1;θ—扩张角。2211sin112sin−+−=nn222v−=1215.0SS+=013.01(4).转弯巷道转弯时的局部阻力系数

(考虑巷道粗糙程度)可按下式计算:当巷高与巷宽之比H/b=0.2~1.0时,当H/b=1~2.5时式中ξ0——假定边壁完全光滑时,90°转弯的局部阻力系数,其值见表3-3-1;α——巷道的摩擦阻力系数,N.s2/m4;β——巷道转弯角度影响

系数,见表3-3-2。()+=Hb280()++=bH65.035.01280(5).风流分叉与汇合1)风流分叉典型的分叉巷道如图所示,1~2段的局部阻力hl1~2和

1~3段的局部阻力hl1~3分别用下式计算:2)风流汇合如图所示,1~3段和2~3段的局部阻力hl1~3、hl2~3分别按下式计算:式中:()233213~122vvvKhl+−=()233223~222vvvKhl+−=22

321121coscosvQQvQQ+=132θ1θ2()22221212~1cos22vvvvKhl+−=()23331213~1cos22vvvvKhl+−=θ2θ31233.局部风阻在局部阻力

计算式中,令,则有:式中Rl称为局部风阻,其单位为N.s2/m8或kg/m7。此式表明,在紊流条件下局部阻力也与风量的平方成正比2QRhll=lRS=22三、正面阻力若风流中存在物体,则空气流动时,必然使风速突然重

新分布,造成风流分子间的互相冲击而产生的阻力叫正面阻力,由正面阻力所引起的风流能量损失叫正面阻力损失。从实验得知:式中:--正面风阻。PaQRhzhzh2=zhh四、矿井通风阻力定律前面所介绍的三种阻力形式,它们虽然具有本身的特点,但都包含一个共同的规律,即:式中:R--

风阻。这个公式是矿井通风中风量与能量损失之间相互关系的一个普遍规律,称为矿井通风阻力定律。将以它作为一个基本的规律,去分析今后所遇到的矿井通风中的若干问题,从而找出解决矿井通风的方法。PaRQh2=第三节矿井风阻特性曲线及等积孔一、矿井

风阻特性曲线在紊流条件下,摩擦阻力和局部阻力均与风量的平方成正比。故可写成一般形式:h=RQ2Pa。对于特定井巷,R为定值。用纵坐标表示通风阻力(或压力),横坐标表示通过风量,当风阻为R时,则每一风量

Qi值,便有一阻力hi值与之对应,根据坐标点(Qi,hi)即可画出一条抛物线。这条曲线就叫该井巷的阻力特性曲线。风阻R越大,曲线越陡。0QhR二、矿井总风阻从入风井口到主要通风机入口,把顺序连接的各段井巷的通风阻力累加起来,就得到矿井通风总阻力hRm,

这就是井巷通风阻力的叠加原则。已知矿井通风总阻力hRm和矿井总风量Q,即可求得矿井总风阻:N.s2/m8Rm是反映矿井通风难易程度的一个指标。Rm越大,矿井通风越困难;三、矿井等积孔我国常用矿井等积孔作为衡量矿井通风难易程度的指标。假定在无限空间有一薄壁,

在薄壁上开一面积为A(m2)的孔口。当孔口通过的风量等于矿井风量,且孔口两侧的风压差等于矿井通风阻力时,则孔口面积A称为该矿井的等积孔。2QhRRmm=AIIIP2,v2P2,v2设风流从I→II,且无能量损失,

则有:得:风流收缩处断面面积A2与孔口面积A之比称为收缩系数φ,由水力学可知,一般φ=0.65,故A2=0.65A。则v2=Q/A2=Q/0.65A,代入上式后并整理得:取ρ=1.2kg/m3,则:因Rm=hRm/Q2,故有由此可见,A是Rm的函数,故可以

表示矿井通风的难易程度。当A>2,容易;A=1~2,中等;A<1困难。22221122vPvP+=+()RmRmhvhvPP/2,222221===−()RmhQA/265.0=RmhQA19.1=mRA19.1=例题3-7某矿井为中央式通风系统,测得矿井通风总阻力h

Rm=2800Pa,矿井总风量Q=70m3/s,求矿井总风阻Rm和等积孔A,评价其通风难易程度。解对照表3-4-1可知,该矿通风难易程度属中等。1、对于多风机工作的矿井,应根据各主要通风机工作系统的通风阻力和风量,分别计算各主要通风机所担

负系统的等积孔,进行分析评价。8222/571.070/2800/mNsQhRmRm===257.1571.0/19.1/19.1mRAm===2、必须指出,表3-4-1所列衡量矿井通风难易程度的等积孔值,是1873年缪尔格(Murgue)根据当时的生产情况提出的[

3],一直沿用至今。由于现代的矿井规模、开采方法、机械化程度和通风机能力等较以前已有很大的发展和提高,表中的数据对小型矿井还有一定的参考价值,对大型矿井或多风机通风系统的矿井,衡量通风难易程度的指标还有待研究。第四节降低矿井通风阻力措施降低矿井通风阻力,对保证矿井安全生产和提高经济效益具有重要意义

。一、降低摩擦风阻1.减小摩擦阻力系数α。2.保证有足够大的井巷断面。在其它参数不变时,井巷断面扩大33%,Rf值可减少50%。3.选用周长较小的井巷。在井巷断面相同的条件下,圆形断面的周长最小,拱形断面次之,矩形、梯形断面的周长较大。4.减少巷道长度。5.避

免巷道内风量过于集中。二、降低局部风阻局部阻力与ξ值成正比,与断面的平方成反比。因此,为降低局部阻力,应尽量避免井巷断面的突然扩大或突然缩小,断面大小悬殊的井巷,其连接处断面应逐渐变化。尽可能避免井巷直角转弯或大

于90°的转弯,主要巷道内不得随意停放车辆、堆积木料等。要加强矿井总回风道的维护和管理,对冒顶、片帮和积水处要及时处理。三、降低正面风阻在通风井巷中,应清除不必要的堆积物,尤其是抽出式通风的回风道,往往不易引起人们的重视。这一点

应予特别注意。四、合理选择降低风阻的井巷降低风阻的目的,是为了降低通风阻力从而降低电耗。在同样风阻的条件下,风量的大小对阻力的影响更为突出一些。那么在风量大的井巷采取降低风阻的措施,收效就显著得多。所以对主要的进、出风井巷,采用适当措施降低风

阻就显得特别重要。第五节风速的测定一、风速表1、翼式风速由于翼片较轻,可测定0.5-10m/s的风速。2、杯式风速用于测定大于10m/s的风速。3、热球式电风速计是一种灵敏性较高的风表,由热球探头和测量仪表两部分组成。该风速计不必携带秒表,操作简便,有0.05-10m/s及

10m/s以上两种测定范围的风速计。此外,还可根据皮托管测出的动压值计算风速;也可用烟雾对风速作粗略测定。二、风速的测定由于风流在断面上速度分布不同,为了测定平均风速,可按以下方法测定:1.迎面法测风员面向风流,手持风表,手臂伸向

正前方。2.侧身法侧风员背向巷道壁,手持风表,手臂伸出与风流垂直。第六节矿井巷道摩擦阻力系数的测定矿井中大多数通风井巷风流的Re值已进入阻力平方区,λ值只与相对糙度有关,对于几何尺寸和支护已定型的井巷,相对糙度一定,则λ可视为定值;在标准状态下空气密度ρ=1.2kg/m3。对上式,令:α称为摩

擦阻力系数,单位为kg/m3或N.s2/m4。则得到紊流状态下井巷的摩擦阻力计算式写为:标准摩擦阻力系数:通过大量实验和实测所得的、在标准状态(ρ0=1.2kg/m3)条件下的井巷的摩擦阻力系数,即所

谓标准值α0值,当井巷中空气密度ρ≠1.2kg/m3时,其α值应按下式修正:8=23QSLUhf=2.10=还应说明,当巷道漏风时,应按两测点的风量求出巷道的平均风量。再求出a值。测定时应注意以下几点:(1)压差计应放在欲测段风流下方测点的后面

距离6-8m处,以免影响压差的测定。(2)读数时,两测点之间不应有行人或车辆。(3)胶皮管内不能进水,管内应畅通无阻。(4)各接头处不能有漏气。(5)皮托管应用支架支撑牢固。第三章习题3-23-63-73-83-103-11

精品优选
精品优选
该用户很懒,什么也没有留下。
  • 文档 34925
  • 被下载 0
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?