【文档说明】XXXX重庆大学机械原理考前辅导班课件(考研).pptx,共(90)页,1.073 MB,由精品优选上传
转载请保留链接:https://www.ichengzhen.cn/view-260129.html
以下为本文档部分文字说明:
平面运动链自由度计算公式为HL23ppnF−−=运动链成为机构的条件运动链成为机构的条件是:取运动链中一个构件相对固定作为机架,运动链相对于机架的自由度必须大于零,且原动件的数目等于运动链的自由度数。满足以上条件的运动链即为机构,机构的自由度可用运动链自由度公式计算
。一、平面机构的结构分析计算错误的原因例题圆盘锯机构自由度计算解n=7,pL=6,pH=0F=3n−2pL−pH=37−26=9错误的结果!12345678ABCDEF两个转动副12345678ABCDEF●复合铰链两个以上的构件在同一处以转动副联接所构成的运动副。k个构件
组成的复合铰链,有(k-1)个转动副。正确计算B、C、D、E处为复合铰链,转动副数均为2。n=7,pL=10,pH=0F=3n−2pL−pH=37−210=1计算机构自由度时应注意的问题准确识别复合铰链举
例关键:分辨清楚哪几个构件在同一处用转动副联接12313424132312两个转动副两个转动副两个转动副两个转动副1234两个转动副1423两个转动副例题计算凸轮机构自由度F=3n−2pL−pH=33−23−1=2●局部自由
度机构中某些构件所具有的仅与其自身的局部运动有关的自由度。考虑局部自由度时的机构自由度计算设想将滚子与从动件焊成一体F=32−22−1=1计算时减去局部自由度FPF=33−23−1−1(局部自由度)=1?●虚约束机构
中不起独立限制作用的重复约束。计算具有虚约束的机构的自由度时,应先将机构中引入虚约束的构件和运动副除去。虚约束发生的场合⑴两构件间构成多个运动副两构件构成多个导路平行的移动副两构件构成多个轴线重合的转动副两构件构成多个接触点处法线重合的高副⑵两构
件上某两点间的距离在运动过程中始终保持不变未去掉虚约束时F=3n−2pL−pH=34−26=0构件5和其两端的转动副E、F提供的自由度F=31−22=−1即引入了一个约束,但这个约束对机构的运动不起实际约
束作用,为虚约束。去掉虚约束后?3241ACBDEF5AB=CDAE=EFF=3n−2pL−pH=33−24=1⑶联接构件与被联接构件上联接点的轨迹重合构件3与构件2组成的转动副E及与机架组成的移动副提供的自由度F=31−22=−1即引入了一
个约束,但这个约束对机构的运动不起实际约束作用,为虚约束。去掉虚约束后构件2和3在E点轨迹重合3E4125ABCBE=BC=ABEAC=90F=3n−2pL−pH=33−24=11B342A⑷机构中对传递运动不起独立作用的对称部分对称布置的两个行星轮2和2
以及相应的两个转动副D、C和4个平面高副提供的自由度F=32−22−14=−2即引入了两个虚约束。未去掉虚约束时F=3n−2pL−pH=35−25−16=−1去掉虚约束后F=3n−2pL−pH=33−23−12=11
234ADBC22虚约束的作用⑴改善构件的受力情况,分担载荷或平衡惯性力,如多个行星轮。⑵增加结构刚度,如轴与轴承、机床导轨。⑶提高运动可靠性和工作的稳定性。注意机构中的虚约束都是在一定的几何条件
下出现的,如果这些几何条件不满足,则虚约束将变成实际有效的约束,从而使机构不能运动。机构的结构分析基本思路驱动杆组基本杆组+机构由原动件和机架组成,自由度等于机构自由度不可再分的自由度为零的构件组合基本杆组应满足的条件F=3n−2pL=
0即n=(23)pL基本杆组的构件数n=2,4,6,…基本杆组的运动副数pL=3,6,9,…⑴n=2,pL=3的双杆组(II级组)内接运动副外接运动副R-R-R组R-R-P组R-P-R组P-R-P组R-P-P组⑵n
=4,pL=6的多杆组①III级组结构特点有一个三副构件,而每个内副所联接的分支构件是两副构件。r1r2O1O2O2r2O1高副低代接触点处两高副元素的曲率半径为有限值接触点处两高副元素之一的曲率半径为无穷大高副低代虚拟构件虚拟构件高副低代举例作出下列高副机构的低副
替代机构高副低代DECBADECBA例题平面机构结构分析1.计算图示机构的自由度,并指出其中是否含有复合铰链、局部自由度或虚约束;2.该机构如有局部自由度或虚约束,说明采用局部自由度或虚约束的目的;3.画出图示瞬时该机构高副低代后的机构运动简图;取与机构自由度数相同数目的连架杆为原
动件,对机构进行结构分析,要求画出机构的驱动杆组和基本杆组,并指出机构的级别。解n=8,pL=11,pH=1,F=3n−2pL−pH=38−211−11=1。K处为局部自由度,B处为复合铰链,移动副H、H之一
为虚约束。高副低代14327685ABCHGEDHKJLFI14327685ABCHGEDHKLFI虚拟构件932BCD76GHI8KL9拆分基本杆组1AH45BEFII级机构二、平面连杆机构的基本性质1
.四杆机构中转动副成为整转副的条件⑴转动副所连接的两个构件中,必有一个为最短杆。⑵最短杆与最长杆的长度之和小于或等于其余两杆长度之和。B2C22.急回运动特性极限位置1连杆与曲柄拉伸共线极限位置2连杆与曲柄重叠共线极位夹角—机构输出构件处于两极限位置时,输入构件在对应位置所夹的锐角。工
作行程(慢行程)曲柄转过180º+,摇杆摆角,耗时t1,平均角速度m1=t1180º+180º−返回行程(快行程)曲柄转过180º−,摇杆摆角,耗时t2,平均角速度m2=t2ADB1C1常用行程速比系数K来衡
量急回运动的相对程度。−+=−+===180180180180//121m2mttK设计具有急回要求的机构时,应先确定K值,再计算。18011+−=KK
B2C2B1C1AD180º-180º+180º+180º−曲柄滑块机构的极位夹角180º+180º−摆动导杆机构的极位夹角摆动导杆机构=慢行程快行程慢行程快行程ABDC3.传力特性压力角和传动角有效分力F=
Fcos=Fsin径向压力F=Fsin=Fcos角越大,F越大,F越小,对机构的传动越有利。连杆机构中,常用传动角的大小及变化情况来衡量机构传力性能的优劣。FFF压力角—作用在从动件上的力的方向与着力点速度方向所夹锐角。传动角—压力角的余角。传动角出现极值的位置及
计算C1B1abcdDA12bcadcb2)(arccos2221−+=bcadcb2)(arccos1802222++−=min为1和2中的较小值者。思考:对心式和偏置式曲柄滑块机构出现min的机构位置?传动角总
取锐角B2C2曲柄摇杆机构双曲柄机构双摇杆机构同一运动链可以生成的不同机构1423ABCD1423ABCD1423ABCD1423ABCD曲柄滑块机构曲柄摇块机构转动导杆机构1423ABC1432ABC431C
AB2431CAB2三、平面连杆机构速度分析的相对运动图解法理论基础点的绝对运动是牵连运动与相对运动的合成步骤●选择适当的作图比例尺,绘制机构位置图●列出机构中运动参数待求点与运动参数已知点之间的运动分析矢量方程式●根据矢量方
程式作矢量多边形●从封闭的矢量多边形中求出待求运动参数的大小或方向同一构件两点间的运动关系(1)同一构件上两点间的速度关系CAACvvv+=牵连速度相对速度ABC平面运动构件基点绝对速度1.机构各构件上相
应点之间的速度矢量方程移动副中两构件重合点的运动关系(2)组成移动副两构件重合点间的速度关系1B2B1B2Bvvv+=B(B1,B2)牵连速度相对速度绝对速度21两构件重合点运动关系总结移动副连接1A2转动副连接12A(3)两构件上重合点之间的运动关系A21Avv=A21Avv
21重合点重合点21=12(A1,A2)相对运动图解法分析举例(速度分析)c解CBBCvvv+=方向大小√√水平?⊥BC选速度比例尺v[(ms)mm],在任意点p作图,使vB=vpb由图解法得到C点的绝对速度vC=vpc,方向p
→cC点相对于B点的速度vCB=vbc,方向b→c图示平面四杆机构,已知各构件尺寸及vB,求2及vC、vE。11ABCE23vB?pb2=vCBlBC=vbclBC,逆时针方向2vC2.机构运动分析的相
对运动图解法举例相对运动图解法举例(速度分析续)由图解法得到E点的绝对速度vE=vpe,方向p→eECCEBBEvvvvv+=+=方向√⊥BE√⊥CE大小√?√?e可以证明△bce∽△BCE速度极点(速度零点)cpb速度多边形E点相对于B点的速度v
EB=vbe,方向b→eE点相对于C点的速度vEC=vce,方向c→e11ABCE23vB2vC速度多边形性质速度多边形(Velocitypolygon)的性质●连接p点和任一点的矢量代表该点在机构图中
同名点的绝对速度,指向为p→该点。●连接任意两点的矢量代表该两点在机构图中同名点的相对速度,指向与速度的下标相反。如bc代表vCB。常用相对速度来求构件的角速度。●△bce∽△BCE,称△bce为机构图上△BCE的速度影像(V
elocityimage),两者相似且字母顺序一致,前者沿方向转过90º。●速度极点p代表机构中所有速度为零的点的影像。11ABCE23vB2vCecpb速度影像速度极点(速度零点)速度多边形速度影像用途例如当bc作出后,以bc为边作△bce∽△BCE,且两者字母的顺序方向一致,即可求得
e点和vE,而不需要再列矢量方程求解。速度影像的用途对于同一构件,由两点的速度可求任意点的速度。ecpb速度多边形速度极点(速度零点)速度影像11ABCE23vB2vC六杆机构运动分析(机构简图)45400400180lAB=140lBC=420lCD=420ABCDEF1
234561图示六杆机构,已知各构件尺寸和原动件1的角速度1,求机构在图示位置时的速度vC、vE5及角速度2、3。解(1)作机构运动简图选取长度比例尺l=lAB/ABm/mm,作出机构运动简图。六杆机构速度分析cA
BCDEF1234561(2)速度分析求vC点C、B为同一构件上的两点方向大小⊥AB1lAB⊥CD?⊥BC?CBBCvvv+=选速度比例尺v[(ms)mm],作速度多边形图bvC=vpcm
s,方向p→c求vE2根据速度影像原理,在bc线上,由be2=bcBE2/BC得e2点e2vE2=vpe2ms,方向p→e2p六杆机构速度分析(续)e4(e5)ABCDEF1234561求vE5点E4与E2为两构件上的重合点,且vE5=vE4。方向大小√√∥EF?∥
BC?E4E22E4E5Evvvv+==选同样的速度比例尺v,作其速度图vE4=vE5=vpe4ms,方向p→e4求2、32=vCB/lBC=vbc/lBCrad/s,逆时针23
=vC/lCD=vpc/lCDrad/s,逆时针3cbe2p平面连杆机构的三类运动设计问题⑴实现刚体给定位置的设计⑵实现预定运动规律的设计⑶实现预定轨迹的设计图解法直观易懂,能满足精度要求不高的设计,能为需要优化求解的解析法提供计算初值。四、平面连杆机构的运动设计3P31
.实现刚体给定位置的设计机构运动时A、D点固定不动,而B、C点在圆周上运动,所以A、D点又称为中心点,B、C点又称为圆周点。DAB1C11P12P2刚体运动时的位姿,可以用标点的位置Pi以及标线的标角i给出。铰链四杆机构,其铰链点A、D为固定铰链
点。铰链点B、C为活动铰链点。刚体导引机构的设计,可以归结为求平面运动刚体上的圆周点和与其对应的中心点的问题。中心点中心点圆周点圆周点B2C2B3C32.具有急回特性机构的设计有急回运动要求机构的设计可以看成是实现预定运动规律的设计的一种特例。设计步骤行
程速比系数K极位夹角机构设计其它辅助条件有急回运动平面四杆机构设计的图解法设计一铰链四杆机构。设已知其摇杆CD的长度lCD=75mm,行程速比系数K=1.5,机架AD的长度lAD=100mm,又知摇杆的一个极限位置与机架间的夹角=45,
试求其曲柄的长度lAB和连杆的长度lBC。BDAC解取适当比例尺l(mmm),根据已知条件作图。=180(K−1)/(K+1)=36C2C2C145DA第一组解lAB=l(AC2−AC1)2=50mmlBC=l(AC2+AC1
)2=120mmBC解取适当比例尺l(mmm),根据已知条件作图。=180(K−1)/(K+1)=36第二组解lAB=l(AC1−AC2)2=22.5mmlBC=l(AC1+AC
2)2=47.5mmC2C2C145BCDA熟练应用反转法原理对凸轮机构进行分析。五、凸轮机构图示偏置式移动滚子从动件盘形凸轮机构,凸轮为一偏心圆,圆心在O点,半径R=80mm,凸轮以角速度=10rad/s逆时针方向转动,LOA=50mm,滚子半径r
r=20mm,从动件的导路与OA垂直且平分OA。⑴在图中画出凸轮的理论轮廓曲线和偏距圆;⑵计算凸轮的基圆半径rb并在图中画出凸轮的基圆;⑶在图中标出从动件的位移s和升程h;⑷在图中标出机构该位置的压力角;⑸计算出机构处于图示位置
时从动件移动速度v;⑹凸轮的转向可否改为顺时针转动?为什么?RAOrrRAOrr解⑴凸轮的理论轮廓曲线和偏距圆;⑵rb=R−LOA+rr=80−50+20=50mm;rbesh⑶标出从动件的位移s和升程h如图示;⑷标出机构该位置的压力角
如图示;⑸凸轮与从动件的瞬心在O点,所以机构在图示位置时从动件移动速度为v=OA=0.5m/s;v⑹若凸轮改为顺时针转动,则在推程阶段,机构的瞬心与从动件轴线不在同一侧,将会增大推程压力角。熟练掌握渐开线标准直齿圆柱齿轮参数计算和部分传动参数计算。分
度圆直径d=mz中心距a=1/2(d1+d2)=m/2(z1+z2)a=acos/cos齿顶高ha=ham齿根高hf=(ha+c)m齿全高h=(2ha+c)m齿顶圆直径da=d+2ha齿根圆直径df=d−2hf分度圆齿厚s=m/2基圆齿距p
b=mcos六、齿轮机构例一对渐开线外啮合正常齿标准直齿圆柱齿轮传动,已知传动比i=1.5,模数m=4mm,压力角=20,中心距a=110mm,试求:⑴两齿轮的齿数z1、z2;⑵两齿轮的分度圆直径d1、d2;⑶齿轮1的基圆直径db1、齿顶圆直径da1和齿根圆直径df1;⑷若两
轮的实际中心距a=116mm,模数和传动比均不改变,试确定较优的传动类型,并确定相应的最佳齿数z1,计算节圆半径r1和啮合角;⑸若两轮的实际中心距a=116mm,模数、压力角和传动比均不改变,齿数与(1)的正确计算结果相同,拟采用
标准斜齿圆柱齿轮传动,试确定其螺旋角。解⑴a=0.5m(z1+z2),且z2=iz1,z1=22,z2=33⑵d1=mz1=88mm,d2=mz2=132mm,⑶db1=d1cos=88cos20=82.7mm
da1=d1+2ha=88+21.04=96mmdf1=d1−2hf=88−21.254=78mm⑷正传动,a=r1+r2=r1(1+i)=2.5r1r1=a2.5=46.4mm,取z1=23,r1=46mm,小齿轮取正变位=cos−1(acos/a
)=cos−1(110cos20/116)=27⑸=cos−1[0.5mn(z1+z2)/a]=cos−1[0.54(22+33)/116]=18.5轮系的类型轮系定轴轮系所有齿轮几何轴线位置固定空间定轴轮系平面定轴轮系周转轮系行星轮系(F=
1)差动轮系(F=2)复合轮系由定轴轮系、周转轮系组合而成某些齿轮几何轴线有公转运动七、轮系周转轮系的传动比计算1.周转轮系传动比计算的基本思路周转轮系假想的定轴轮系原周转轮系的转化机构转化机构的特点各构件的
相对运动关系不变转化方法给整个机构加上一个公共角速度(−H)转化H321O1O3O2OH−HH132O1O3O23213H2H1H3H12O1OHO3O23H12O1OHO3O2周转轮系中所有基本构件的回转轴共线,可以根据周转轮系的转化机构写出三个
基本构件的角速度与其齿数之间的比值关系式。已知两个基本构件的角速度向量的大小和方向时,可以计算出第三个基本构件角速度的大小和方向。H321在转化机构中的角速度(相对于系杆的角速度)原角速度构件代号周转轮系转化机构中各
构件的角速度1H=1−H2H=2−H3H=3−HHH=H−H132H2.周转轮系传动比的计算方法求转化机构的传动比iHH3H1H13=i13zz−=“−”号表示转化机构中齿轮1和齿轮3转向
相反周转轮系传动比计算的一般公式中心轮1、n,系杆H112HH1HH1H1......−=−−==nnnnnzzzziH3H1−−=O1O3O23213H2H1H转化机构是转化机构中1轮主动、n轮从动时的传动比,其大小和符
号完全按定轴轮系处理。正负号仅表明在该轮系的转化机构中,齿轮1和齿轮n的转向关系。注意事项⑴⑵齿数比前的“+”、“−”号不仅表明在转化机构中齿轮1和齿轮n的转向关系,而且将直接影响到周转轮系传动比的大小和正负号。⑶1、n和H是周转轮系中各
基本构件的真实角速度,且为代数量。i1nH行星轮系其中一个中心轮固定(例如中心轮n固定,即n=0)差动轮系1、n和H三者需要有两个为已知值,才能求解。H1HH1HH1H110−=−−==nniH1H1H1H11,1nniiii−=−=定义正号机构—转化
机构的传动比符号为“+”。负号机构—转化机构的传动比符号为“−”。2K−H型周转轮系称为基本周转轮系(。既包含定轴轮系又包含基本周转轮系,或包含多个基本周转轮系的复杂轮系称为复合轮系。复合轮系的组成方式串联型复合轮系(Seriescombinedgear
train)前一基本轮系的输出构件为后一基本轮系的输入构件封闭型复合轮系(Closedcombinedgeartrain)轮系中包含有自由度为2的差动轮系,并用一个自由度为1的轮系将其三个基本构件中的两个封闭双重系杆型复合轮系(Combinedgeartrainwi
thdoubleplanetcarrier)主周转轮系的系杆内有一个副周转轮系,至少有一个行星轮同时绕着3个轴线转动复合轮系传动比的计算方法⑴正确区分基本轮系;⑵确定各基本轮系的联系;⑶列出计算各基本轮系传动比的方程式;⑷求解各基本轮系传动比方程式。区分基本周转轮系的思路基本周转轮系行
星轮中心轮中心轮系杆几何轴线与系杆重合几何轴线与系杆重合支承啮合啮合例1图示轮系,各轮齿数分别为z1=20,z2=40,z2=20,z3=30,z4=80,求轮系的传动比i1H。解区分基本轮系行星轮系2、3、4、H定轴轮系1、
2组合方式串联定轴轮系传动比22040122112−=−=−==zznni行星轮系传动比520801)(1124H42H2=+=−−=−=zzii复合轮系传动比1052H212H1−=−==iii系杆H与齿轮1转向相反复合轮系传动比计算举例4221H3行星轮系例2图示
电动卷扬机减速器,已知各轮齿数分别为z1=24,z2=33,z2=21,z3=78,z3=18,z4=30,z5=78,求传动比i15。解区分基本轮系差动轮系2−2、1、3、5(H)定轴轮系3
、4、5组合方式封闭定轴轮系传动比3131878355353−=−=−==zznni53313nn−=2213435差动轮系差动轮系2−2、1、3、5(H)定轴轮系3、4、5组合方式封闭定轴轮
系传动比3131878355353−=−=−==zznni53313nn−=差动轮系传动比281433135551−=−−−nnnn复合轮系传动比24.215115=nni齿轮5与齿轮1转向相同281432124783321325351513−=−=−=−−=zzzznnnni22
13435复合轮系传动比计算-例6例6图示轮系中,已知1和5均为单头右旋蜗杆,各轮齿数为z1=101,z2=99,z2=z4,z4=100,z5=100,n1=1rmin,方向如图。求nH的大小及方向。差动轮系解区分基本轮系差动轮系2、3、4、H定轴轮系1、2、1、5、5、4
组合方式封闭定轴轮系传动比122112zznni==蜗轮2转动方向向下minr/99112122===innn1234H54215n1例6(续)差动轮系2、3、4、H定轴轮系1、2、1、5、5、4组合方式封闭定轴轮系传动比122112zznni==
蜗轮2转动方向向下51454141zzzznni==minr/1000010141144===innn蜗轮4转动方向向上minr/99112122===innn1234H54215n1例6(
续)minr/99112122===innnminr/1000010141144===innn差动轮系传动比24H4H24H2−=−−=zznnnni110000101991HH−=−−−nn差动轮系2、3、4、H定轴轮系1、2、1、5、5、4
组合方式封闭1234H54215n1定轴轮系传动比例6(续)minr/99112122===innnminr/1000010141144===innn差动轮系传动比24H4H24H2−=−−=zznnnni差动轮系2、3、4、H定轴轮系1、2、1、5、5、4组合
方式封闭1234H54215n1minr/19800001H=n系杆H与蜗轮2转向相同定轴轮系传动比轮系的功能一、实现大传动比传动二、实现变速传动三、实现换向传动四、实现分路传动五、实现结构紧凑的大功率传动六、实现运动合成与分解熟练掌握等效动力学模型参数和飞轮转动惯量的计算。研究机械系统
的真实运动规律,必须分析系统的功能关系,建立作用于系统上的外力与系统动力参数和运动参数之间的关系式,即机械运动方程。理论依据机械系统在时间t内的动能增量E应等于作用于该系统所有外力的元功W。微分形式dE=dW对于单自由度机械系统,只要知道其中一个构
件的运动规律,其余所有构件的运动规律就可随之求得。因此,可以把复杂的机械系统简化成一个构件,即等效构件,建立最简单的等效动力学模型。八、机械系统动力学机械运转速度产生波动的原因作用在机械上的外力或外力矩的变化。机械速度波动类型周期性速度波动非周期性速度波动周期性速度波动采用飞轮进行调节,其基
本原理是利用飞轮的储能作用。xy123OAB1F3v2机械系统的等效动力学模型S2S1S3M11v32例图示曲柄滑块机构中,设已知各构件角速度、质量、质心位置、质心速度、转动惯量,驱动力矩为M1,阻力F3。动能增量)2222d(d233222222211
vmvmJJESS+++=外力所做元功之和dW=Ndt=(M11+F3v3cos3)dt=(M11−F3v3)dt运动方程tvFMvmvmJJSSd)()2222d(3311233222222211
−=+++选曲柄1为等效构件,曲柄转角1为独立的广义坐标,改写公式tvFMvmvmJJSSd)]([]})()()([2d{13311213321222122121−=+++具有转动惯量的量纲⎯Je具有力矩的量纲⎯MetM
Jd]2d[1e21e=定义Je⎯等效转动惯量,Je=Je(1)Me⎯等效力矩,Me=Me(1,1,t)结论对一个单自由度机械系统(曲柄滑块机构)的研究,可以简化为对一个具有等效转动惯量Je(1),在其上作用有等效力矩
Me(1,1,t)的假想构件的运动的研究。等效构件JeOB1Me1JeO1Me1xy123OAB1F3v2S2S1S3M11v32概念等效转动惯量(Equivalentmomentofinertia)—等效构件具有的转动惯量。等效构件具有的动能等于原机械系统所有构件动能
之和。等效力矩(Equivalentmomentofforce)—作用在等效构件上的力矩。等效力矩所产生的瞬时功率等于作用在原机械系统上所有外力在同一瞬时产生的功率之和。具有等效转动惯量,其上作用有等效力矩的等效构件称为等效
动力学模型。选滑块3为等效构件,滑块位移s3为独立的广义坐标,改写公式tFvMvmvvmvJvJvSSd])([]})()()([2d{33113323222322231123−=+++具有质量的量纲⎯me具有力的量纲⎯Fe定义me
⎯等效质量,me=me(s3)Fe⎯等效力,Fe=Fe(s3,v3,t)结论对一个单自由度机械系统(曲柄滑块机构)的研究,也可以简化为对一个具有等效质量me(s3),在其上作用有等效力Fe(s3,v3,t)的假想构件的运动的研究。OAB1mev3Fe
s3mev3Fes3xy123OAB1F3v2S2S1S3M11v32等效构件概念等效质量(Equivalentmass)—等效构件具有的质量。等效构件具有的动能等于原机械系统所有构件动能之和。等效力(
Equivalentforce)—作用在等效构件上的力。等效力所产生的瞬时功率等于作用在原机械系统上所有外力在同一瞬时产生的功率之和。具有等效质量,其上作用有等效力的等效构件也称为等效动力学模型。单自由度机
械系统等效动力学参数的一般表达取转动构件为等效构件=+=niiiSSiiJvmJ122e==niiiiiiMvFM1ecos取移动构件为等效
构件=+=niiiSSiivJvvmm122e==niiiiiivMvvFF1ecos例1图示机床工作台传动系统,已知各齿轮的齿数
分别为:z1=20,z2=60,z2=20,z3=80。齿轮3与齿条4啮合的节圆半径为r3,各轮转动惯量分别为J1、J2、J2和J3,工作台与被加工件的重量和为G,齿轮1上作用有驱动力矩M1,齿条的节线上水平作用有生产阻力F
r。求以齿轮1为等效构件时系统的等效转动惯量和等效力矩。解等效转动惯量()()2332212322132212212142133212221e++++=+
+++=rzzzzgGzzzzJzzJJJvgGJJJJJ132r32M1Fr4代入已知值()++++=grGJJJJJ233221e1441144191123r32213r133rrrFzzzzrFrFM−=
−=−=等效驱动力矩Md=M1,整个传动系统的等效力矩为123rdrderFMMMM−=+=系统的等效转动惯量为常数,高速运动构件的转动惯量在等效转动惯量中占的比例大。等效阻力矩为132r32M1Fr4例2图示起重机机构示意图,
作用于构件1上的驱动力矩M1=60Nm,重力Q=980N,卷筒半径R=0.1m,各轮齿数:z1=20,z2=40,转动惯量分别为J1=1kgm2,J2=4kgm2。若取构件1为等效构件,求等效转动惯量Je和等效力矩Me。解Je=J1+J2(z1/z2)2+Q/g(R
z1/z2)2=2.25kgm2Me=M1−QR(z1/z2)=11NmRQ12M11例3图示为某机械以主轴为等效构件时,其等效驱动力矩在一个工作周期中的变化规律。设主轴转速n=1500r/min,等效阻力矩Mr为常数
,要求系统的速度波动系数为0.05,忽略机械中其余构件的等效转动惯量,试确定系统的最大盈亏功Amax,并计算安装在主轴上的飞轮转动惯量。2034MdNmrad250005002034MdNmrad25000500解在一个工作周期内等效驱动力矩做功为Md
2=44500+2500=2125Nm则等效阻力矩为Mr=21252=1062.5Nm1062.5Mrf1f2f3f1=−(1062.5−500)2=−883.6Jf2=(5000−1062.5)4=3092.5Jf
3=−(1062.5−500)54=−2208.9J2034MdNmrad250005001062.5Mr盈亏功:0−2:A1=f1=−883.6J0−34:A2=f
1+f2=2208.9J0−2:A3=f1+f2+f3=0最大盈亏功:Amax=A2−A1=2208.9−(−883.6)=3092.5Jf1f2f32034MdNmrad250005001062.5Mr飞轮转动惯量为JF=900A
max(2n2)=9003092.5(2150020.05)=7.37kgm2f1f2f32034MdNmrad250005001062.5Mr用能量指示图确定最大盈亏功f1=−(1062.5−500)2=−883.6Jf2=(50
00−1062.5)4=3092.5Jf3=−(1062.5−500)54=−2208.9J20883.6J23092.5J34-2208.9J能量最大位置能量最小位置Amax=3092.5J例4图示减速器,已知传动比i=z2/z1=3,作用在大齿轮上的阻力矩
随大齿轮的转角2变化,其变化规律为:当02时,阻力矩为M2=300Nm;当22时,阻力矩为0。又已知小齿轮的转动惯量为J1,大齿轮的转动惯量为J2。假设作用在小齿轮上的驱动力矩M1为常数,小齿轮为等效构件。试求等效转动惯量Je、等效阻力
矩Mr、等效驱动力矩Md、画出Mr、Md随等效构件转角1的变化曲线,计算最大盈亏功Amax。M1121M22解根据动能等效的原则Je=J1+(z1/z2)2J2=J1+J2/9根据外力做功等效的原则,在轮1由
0转至3区间内,Mr=100Nm,在轮1由3转至6区间内,Mr=0。Md=1003/6=50NmM/Nm1005036MrMd0f1f2f1=−(100−50)3=−471.24Jf2=503=471.24J0~3:A1=f1
=−471.24J0~6:A2=f1+f2=0最大盈亏功:Amax=A2−A1=471.24JM/Nm1005036MrMd0