【文档说明】数列不等式放缩的基本类型-完整版PPT课件.ppt,共(44)页,2.440 MB,由小橙橙上传
转载请保留链接:https://www.ichengzhen.cn/view-256832.html
以下为本文档部分文字说明:
数列不等式放缩的基本类型数列与不等式都是数学竞赛的重要内容,也是新课程改革以前的高考压轴题,以数列为背景的不等式问题,常称为数列不等式。例1.数列{}na中,11a=,37a=,且11(2)1nnnaann+−=−≥
.(1)求2a及{}na的通项公式;(2)设ka是{}na中的任意一项,是否存在,,krpN()rpk,使,,kpraaa成等比数列?如存在,试分别写出p和r关于k的一个..表达式,并给出证明;(3)证明:对一切nN,6711122221+
++naaa.一、裂项放缩对于分式型数列不等式,常转化为裂项相消来解决。典型例题例2.在单调递增数列}{na中,12a=,24a=,且12212,,+−nnnaaa成等差数列,22122,,++nnnaaa成等比数列,,3,
2,1=n.(1)①求证:数列}{2na为等差数列;②求数列}{na的通项公式.(2)设数列}1{na的前n项和为nS,证明:43(3)nnSn+,*nN.典型例题常用放缩和裂项拆项的结论:(1)*21111111(2,)1(1)(1)1kkNkkkk
kkkkk−==−++−−(2)*2122(1)2(1)(2,)11kkkkkkNkkkkk+−==−−+++−(3)*311111(2,)(1)(1)2(1)(1)kkNkkkkkkkk=−+−−+
(4)()3112112(1)(1)11(1)(1)11kkkkkkkkkk=−+−−++−++−(5)1211111111()...()kkkbbbbbb−=−++−+知识归纳典型例题例3.已知数列na的各项均为正实数,nS为
数列na的前n项和,且对于任意的正整数n,都有233312nnSaaa=+++,(1)求数列na的通项公式;(2)若31nnba=,数列{}nb的前n项和为nT,求证:3nT。(2)3311nnban==方法1:111))1(1)1(1()1
()1(113+−++−−=+−mmmmmmmmmm=(2111)1111−+++−−mmmmm而mmmmm=−++−++211211,111113+−−mmm原式<1+111141213111+−−++−+−nn=3
111222+−−+nn方法2:)1)(1()1(2−−+−+=nnnnnnn,11)1(1121−−−=−+−nnnnnnnnnnnnnnn111)1(121−−=−−−原式<313)1113121211(21−=−−++−+−+nnn。二、等比求和放缩对于
指数型数列不等式,常转化为等比数列求和的模式。例4.已知数列na满足11a=,()121nnaanN+=+(1)求数列na的通项公式;(2)证明:231213221naaaaaannn<<++++−(n∈N*).(3)证明:12311115
3naaaa++++。(4)证明:1231233nnaaaa++++。典型例题(1)*121()nnaanN+=+112(1)nnaa++=+1na+是以112a+=为首项,2为公比的等比数列。12.nna+=即*21().nn
anN=−(2)证明:当nN时,112121112122(2)2nnnnnnaa++−−==−−,或()()111211211212211nnnnnnaa+++−+−==−−+(糖水原理)于是12231....2nnaaanaaa++++又1112
11111111.2122(21)23.222232nnnnnnnnaa+++−==−=−−−−+−,于是1222311111111...(...)(1),2322223223nnnnaaannnaaa++++−+++=−−−故*122311...().232
nnaaannnNaaa+−+++(3)放缩1:利用糖水原理放缩。若0,0abm,则bbmaam++。于是()11111212211nnn−+=−−+。但这个放缩力度偏大,经尝试,仅保留1、2、3、4项,放缩不会成功。当6,nnN时,左端2345
561111111112121212121222n−++++++++−−−−−5111111111115111371531162371531163n−=+++++−+++++,放缩成功。放缩2:其实我们可以更巧妙地、创造性地使用糖水原理。当4n时,()
41115112115152211nnn−+=−−+,思考:1,2,3n=时能用糖水原理放缩吗?左端23014111111121212115222n−++++++−−−3112111251113715237153n−=+
++−+++,一次成功。放缩3:当2n时,()22221322132nnnnna−−−=−=+−,左端=23111121212121n++++−−−−211111322n−++++
121511323n−=+−。检验,当1n=时,命题也成立。(4)当2n时,()22221323221nnnnnnnnna−−−==−+−,则01212312312313222nnnnaaaa−
++++++++,令01223222nnA−=+++,利用错位相减易得2262nnA−+=−,故21231231216332nnnnaaaa−++++++−.例5.已知数列na满足:2,1
21==aa,且1123(2,)nnnaaann+−=+N.(1)设1()nnnbaan+=+N,求证nb是等比数列;(2)①求数列na的通项公式;②求证:对于任意Nn都有121111174nnaaaa−++++成立.典型例题),2(),(311−++=+Nnn
aaaannnn13nnnaa++=)2(,311=+−−naannn相减得)2(,32111=−−−+naannn2121314nna−−+=,)2(n,41322−=nna故4)1(3nnna−−=。②事实上,因为0n
a,所以1221122121111111nnnaaaaaaa−−+++++++,只需证明12212111174nnaaaa−++++即可。放缩1:1231111−+++naaa1341341341231++++++=−n12533434341−++++n67)
311(61122−+=−n,利用糖水原理,nnn2223511314134=+−+−,则naaa242111+++134134134242−++−+−=nn26435353521++++7241)311(7252122−+=−n,故n
naaaa212211111++++−477212672125724167==+。放缩2:易证11271134−−+nn,则1231111−+++naaa1341341341231++++++=−n1171711−+++n67)711(67−=n,同理可得127211
34−−nn则naaa242111+++134134134242−++−+−=n1172172121−+++n127)711(127−=n,故nnaaaa212211111++++−4712767
=+。放缩3:13413411212212−++=+−−nnnnaa)13)(13()33(4212212−++=−−nnnnnnnn21221233)33(4+−−nn2123434+=−,故nnaaaa212211111++++−nn212433
4343434211++++++−)311(922322−−+=n473663366218319223===+。评注:与奇偶分类有关的放缩问题,常常需要将相邻项合二为一,捆绑处理,显得较为灵活。要研究捆绑方式,如2
2122111443131nnnnaa+++=+−+2212214(33)(31)(31)nnnn+++=−+2212214(33)33nnnn−++2214433nn+=+,放缩就出现了方向性错误。三、对应项放缩对于数列不等式两端分别为
两个数列的和的形式,可以先比较对应项的大小,再累加即可。例6.已知正项数列{}na中,其前n项和为nS,且21nnaS=−。(1)求数列{}na的通项公式;(2)设nT是数列12nnaa++的前n项和,n
R是数列()()()1212111nnaaaaaa+++的前n项和,求证:nnRT。典型例题(1)2,21nnSnan==−。(2)欲证nnRT,考虑能否证明()()()1212111nnaaaaaa+++12nn
aa++…………(#)记()135212462nnCn−=,因为212221nnnn−+,所以()()2135212462124623572121nnnCnnn−=++,即1
21nCn+,又21212121nnn−+++,于是(#)成立,累加即证。练习:已知n,m∈N*,Sn=1m+2m+3m+…+nm求证:nm+1<(m+1)Sn<(n+1)m+1-1四.递归放缩常见的变换方式:(1)作差;(2)作商;(3)裂项;(4)等比(无穷递缩)典型例
题例7.已知数列}{na满足:114a=,2122nnnaaa+=+,用][x表示不超过x的最大整数,nS表示数列+21na的前n项和.现给出下列命题:①数列}{na单调递增;②数列}{1nnaa−+单调递减;③21111+−=+nnnaaa;④20153.S=以上
命题中正确的是(填写你认为正确的所有命题的序号).提示:21102nnnaaa+−=,①正确;1104a=,0na,由①知,数列}{1nnaa−+单调递增,②不正确;()122nnnaaa+=+,得21111+−=+n
nnaaa,③正确;20151201611114Saaa=−=,又1111911228nnnaaaa+=++=,1198nnaa−,84139nnS−,④正确。评注:
当n足够大时,8194n。例8.已知数列na满足:2111,2nnnaaaa+==−()nN。(I)证明:112nnaa+;(II)设数列2na的前n项和为nS,证明:()()112221nSnnn++。(2015年浙江省理科压轴题)典
型例题提示:(I)210nnnaaa+−=−1112nnaaa+=,110nnnaaa+=−1na+与na同号,1102a=0na,综上,10,2na,(111,21nnnaaa+=−。评注:21111244
nnaa+=−−+,可加强结论。(II)21nnnaaa+=−11112nnnSaaa++=−=−,目标:()()112221nSnnn++()111212nann+++1121nann
+。方法1:迭代放缩。11111nnnaaa+=+−所以111211111111nnaaaaa+=++++−−−()111211nnaa+=+−,111211111111nnaaaaa+=++++−−−111112na++++=+,得证。方法2:裂项放缩。111111,21nnnn
naaaaa++−==−累加,1111,2nnnaa+−()111212nann+++,得证。方法3:数学归纳法(略)。例9.已知数列na满足0na,01=a,)(12121•++=−+Nnaaannn.记nna
aaS+++=21,)1()1)(1(1)1)(1(11121211nnaaaaaaT+++++++++=.求证:当•Nn时,(1)1+nnaa;(2)2−nSn;(3)3nT。(2008年浙江省理科压轴题)典型例题证明:(1)用数学归纳法证明.①当1n=时,因为2a是方程210
xx+−=的正根,所以12aa.事实上,2512a−=.②假设当*()nkk=N时,1kkaa+,因为221kkaa+−222211(1)(1)kkkkaaaa++++=+−−+−2121()(1)kkkkaaaa++++=−++,
所以12kkaa++.即当1nk=+时,1nnaa+也成立.根据①和②,可知1nnaa+对任何*nN都成立.(2)22111kkkaaa+++−=,121kn=−,,,(2n≥),22111kkkaaa++=+−累加22231(1)nnaaanaa+++=−+−.因为
10a=,所以21nnSna=−−.由1221111nnnnnaaaaa+++=+−1na,所以2nSn−.(3)放缩1:由221112kkkkaaaa+++=+≥111(2313)12kkkak
nnaa++=−+≤,,,,≥,23421(3)(1)(1)(1)2nnnanaaaa−+++≤≥,2222232211(3)(1)(1)(1)2()22nnnnnnaanaaaaa−−−=++++≤≥,故当3n≥时,121111211131
2212nnnT−−−++++=+−,又因为123TTT,所以3nT.放缩2:101nnaa+,123211(1)(1)(1)(1)nnaaaa−++++)1()1)(1(1)1)(1(11121211nnaaaaaaT+++++++++=2122211(1)1111(1)
(1)11nnaaaa−−++++=++−+22121351aa+=+−.放缩3:101nnaa+1112321122()()(1)(1)(1)(1)351nnnnaaaa−−−=+++++,)1()1)(
1(1)1)(1(11121211nnaaaaaaT+++++++++=121()22231()33()3233313nnn−−+++==−−。典型例题例10.已知数列{}na满足121,2aa==,nS为数列{}na的前n项和,且
111nnnSSnan+++=++。(1)求数列{}na的通项公式;(2)若数列{}nb满足1111,nnnbbba++==,求证:12111...2(11)nnbbb++++−。解:(1)方法1:由111nnnSSnan+++=++得,11()1nnnnSSnSSn++
+=−++,即1(1)(1)(1)nnnSnSn+−−+=−+,当2n时,两边同时除以(1)(1)nnn−+,得1111()(1)(1)(1)1nnSSnnnnnnnn+−=−=−−+−−−,所以111322[][]...()(1)
(1)(1)(1)(2)(1)231212nnnnnSSSSSSSSnnnnnnnnnn++−=−+−++−+++−−−−11111311()()...(1)121222nnnnn=−−+−++−+=+−−−所以111(1)(2)(1)()(2)22nnnSnnnn+++=++=
,又2123Saa=+=也满足上式,所以(1)(2)2nnnSn+=,又111Sa==也满足上式,所以*(1)()2nnnSnN+=,另法:由1111()(1)(1)(1)1nnSSnnnnnnnn+−=−=−−+
−−−得111[][]0(2)(1)(1)1nnSSnnnnnnn+−−−=+−−,所以,2n时,1{}(1)1nSnnn−−−是常数列,则2n时,2111(1)122nSSnnn−=−=−−,所以(1)(2)2nnnSn+=,又111Sa==也满足,所以*(1)()2
nnnSnN+=当2n时,1nnnaSSn−=−=,又11a=也满足上式,所以数列{}na的通项公式为nan=。方法2:由111nnnSSnan+++=++得,1121nnnSanan+++=++,即12(1)1nnSnan+=−++,①当2n时,12(
2)nnSnan−=−+,②①−②得12(1)(2)1nnnanana+=−−−+,即1(1)1nnnana+=−+③又12(1)1nnnana+++=+④④−③得121(1)(1)nnnnnananana++++−=−−
,即122(2)nnnaaan++=+,又由③知2n=时,231321aaaa=+=+,上式也成立所以对任意*nN有,122nnnaaa++=+,所以211121...1nnnnnnaaaaaaaa+++−−=−=−==−=,所以数列{}na
是以11a=为首项,1为公差的等差数列,所以数列{}na的通项公式为nan=。另法:由1(1)1nnnana+=−+得,1(1)(1)(1)nnnana+−=−−,当2n时,两边同除以(1)nn−得1111nnaann+−−=
−,所以2n时,1{}1nan−−是常数列,则2n时,211111naan−−==−,所以(2)nann=,而11a=也满足,所以数列{}na的通项公式为nan=。(2)由1111,nnnbbba++==知11nnbbn+=+且0nb,1n=时,122bb=,所以
22b=,又当2n时,1nnbbn−=,所以11()1nnnbbb+−−=,即111nnnbbb+−=−,所以当3n时,3142532111211111...()()()...()()nnnnnbbbb
bbbbbbbbbb−+−+++=+−+−+−++−+−12111112222(11)nnnnnnbbbbbbbbbn+++=−−++=+−−=+−当1n=时,1112(21)b=−,当2n=时,1
211112(31)2bb+=+−,综上所述,对任意*nN,12111...2(11)nnbbb++++−。数列放缩的方法小结一、先对数列求和,再对目标进行放缩二、先对通项进行放缩,再累加求和靠拢目标1.放缩后成
等比数列,再求和2.放缩后成差比数列,再错位相减求和3.放缩后成可分拆形式,再裂项相消求和三、数列不等式两端均为和的结构,比较对应项的大小课堂小结